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ABSTRACT

In�uene maximization (IM) is one of the fundamental problems in the area of in�u-

ene propagation in soial networks. Reent studies in in�uene maximization have

primarily foused on the di�usion of single in�uene. In this thesis, we study the

problem under a new di�usion model named Competing General Threshold (CGT)

model, whih disovers k most in�uential nodes as early adopters of tehnology A

(e.g., Apple) in a market where a ompeting tehnology B (e.g., Blakberry) already

exists along with a set of early adopters of tehnology B. To solve IM under the di�u-

sion of two in�uenes, we �rst de�ne the CGT di�usion model, then estimate both A

and B in�uene probabilities by using Maximum-Likelihood Estimation from Twitter

networks. Next, we propose a new algorithm named gtMineA to �nd k in�uential

A-seeds under the CGT model. Experimental results on Twitter networks show that

our approah outperforms CELF by 15%.

Keywords. Competing Ideas, General Threshold Model, In�uene Maximization,

Soial Networks.
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Chapter 1

Introdution

1.1 Soial and Information Network Analysis

Soial networks suh as Faebook, Twitter, Google+, and so on an be modeled

as direted graphs (also known as soial network graphs) where the nodes represent

individuals (e.g., human being or entities suh as The New York Times ) and the edges

represent soial ties, relationships or interations between individuals. In information

networks suh as arXiv.org, wordpress, and so on, verties are information items

(e.g., researh papers, software engineering projets, or blog posts), edges represent

interations between items. Some main types of large-sale networks that researhers

have used for soial and information network analysis are listed below.

Friendship Networks. Examples of friendship networks inlude Faebook whih

has 1, 280, 000, 000 users as of June 2014, and Twitter whih has 645, 750, 000 users

as of 31 August, 2014. Friendship networks an be modeled using a direted graph

where verties represent people, and there is an direted edge (v, u) from v to u if v

knows and likes u. For example, on Twitter, there are two people, Peter (whose user

id is 318064061) and Mark (whose user id is 317756843). Peter follows Mark on July

7, 2011 (Twitter uses "follow" to say "I want to be friends with you"). In Figure 1.1,

1
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we represent their soial relationship using a Twitter follow graph where nodes are

Peter and Mark respetively, a direted edge between them means that Peter follows

Mark, a value "20110707" assoiated to the edge (Peter,Mark) indiates the follow

date.

Figure 1.1: Following Graph on Twitter. Soure: Figure on Page 12, Greene [2011℄

Signed Networks. When two opposite relationships (suh as like vs. dislike, love

vs. hate, trust vs. distrust, friend vs. foe, and so on) oexist in a soial network,

we model this kind of soial network using a weighted graph G = (V,E, s), where

individuals are represented by nodes, relationships between eah other are represented

by edges, and the sign (positive or negative) of relationships is represented by the edge

weight s ∈ {−1, 1}:

s =











1 if the relationship is like, trust, friend, et.

−1 if the relationship is dislike, distrust, foe, et.

For example, users on Wikipedia an vote for or against the nomination of others

to be Wikipedia administrator, users on Epinions an express trust or distrust of

other people's produt reviews by rating, partiipants on Slashdot an delare others

to be either "friends" or "foes" [Ahmed and Ezeife 2013℄, and users on Youtube an

express like or dislike of other people's omments.

Citation Networks. Citation networks an be modeled using a itation graph where

verties represent researh papers, and there is an direted edge from paper A to paper

2
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B if A ites B. Examples of itation networks inlude arXiv.org.

Collaboration Networks. Collaboration networks (for example, Hollywood ol-

laboration network or aademi ollaboration networks) an be modeled using a ol-

laboration graph where verties represent people, and there is an undireted edges

between two people if they work together on at least one movie or one researh projet.

Examples of ollaboration networks inlude arXiv.org, Github, and DBLP.

Communiation Networks. Communiation networks model the "who-talks-to-

whom", or "who-emails-whom" struture of soial networks. Suh networks an be

onstruted from the logs of emails or from phone all reords [Mumu and Ezeife

2013℄. Examples of ommuniation networks inlude email ommuniation network

from Enron (as in the Enron Sandal). The Enron email network onsists of 1, 148, 072

emails sent between employees of Enron between 1999 and 2003 [KONECT 2014℄.

A number of algorithmi problems in online soial and information networks anal-

ysis that researhers have been working on inlude (a) disovering the sentiment

(positive, neutral, negative, or irrelevant attitude) toward elebrities (e.g., Obama),

produts (e.g., iPhone6), or topi (e.g., Super Bowl), exploring how news, opinions,

or marketing information spread, prediting the trends and opinions on Twitter (b)

making reommendations based on user pro�les, examining friendships on Faebook,

() proessing resumes automatially and �nding great new employees, lustering

olleagues into irles on LinkedIn, (d) measuring doument similarity, extrating

frequent itemsets on Google+, (e) using natural language proessing to perform

sentiment analysis, mining subjetive information from blog posts on the web, (f)

organizing an email inbox, ategorizing related emails together, deteting phishing

emails, traing how fraudulent ativity di�uses within the Enron email orpus, (g)

�nding great software engineers, inspeting ollaborative software engineering proess

on GitHub, (h) analyzing the emotional harateristis of the ontent of a video, de-

termining the video's virality on Youtube [Russell 2013℄, (i) maximizing the spread of

3
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in�uene through a soial network, that is to �nd a small set of in�uential people (the

seed set) in the online ommunities (the rowd) suh that if we market to them by

giving free samples of our produts to them, the �nal adoption of the new produts

will be maximized in the rowd through word-of-mouth networks given that there are

millions of users on Twitter and a ompany only has a limited number of free samples

(budget for the advertising ampaign) to distribute, or to �nd a small set of in�uential

blogs in the blogsphere suh that reading them allows one to gain the most engaging

information and the most trending topis given that there are ountless posts on the

web and one only has limited attention.

1.2 Thesis Outline

The remaining of the thesis is organized as follows. The remaining of Chapter 1

provides a brief introdution on data mining, disusses di�usion of innovations and

in�uene maximization problem, illustrates submodularity and their properties, and

states thesis problem and ontributions. Chapter 2 desribes related work on in-

�uene maximization in great details. Chapter 3 develops a solution framework by

introduing the CGT model, proving its properties, and proposing an e�ient greedy

mining algorithm based on its properties, gtMineA to solve In�uene Maximization

under CGT model. Chapter 4 presents our experimental results. Chapter 5 onludes

our study and suggests future work.

1.3 Data Mining Algorithms Used in Soial and In-

formation Networks Analysis

Data mining algorithms an be grouped into three general ategories based on the

objetives of the task, frequent pattern mining, lassi�ation, and lustering. In

4
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this setion, we introdue the de�nitions and basi onepts on these 3 ategories,

algorithms from eah ategory that have been exploited by researhers for mining

soial and information networks.

1.3.1 Frequent Pattern Mining

Finding frequent patterns is one of the fundamental data mining problems. Frequent

patterns an be a set of items, for example:

• {grape,mango, salmon} whih is a set of items bought together in many trans-

ations in a transation database of a groery store, implying a frequent buying

pattern

• {′frequent′,′ pattern′,′ mining′} whih is a set of words appearing together in

many douments, implying a phrase with a partiular meaning

• {homework1, homework2} whih is a set of two homework assignments suh

that many sentenes appear in both of them, implying plagiarism [Ullman et

al. 2011℄

In frequent pattern (or frequent itemset) mining problem, the input is a transa-

tion database. For example, onsider the transation database D in Table 1.1 whih

ontains 5 transations. We say an itemset (or a pattern) is frequent if the num-

ber of transations in whih the itemset (or the pattern) appears is no less than

a user-de�ned value (alled the minimum support threshold). For example, if we

speify the minimum support threshold at 3, then the itemset (2, 3, 5) is a frequent

itemset, sine it appears in 3 transations, i.e., in transation 200 (1, 2, 3, 5), in trans-

ation 300 (2, 3, 5), and in transation 500 (2, 3, 4, 5). The output is the frequent

itemsets found in the transation databse: the frequent 1−element itemsets L1 =

{(1), (2), (3), (4), (5)}, the frequent 2−element itemsets L2 = {(1, 2), (2, 3), (2, 4), (2, 5), (3, 5)},

5
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the frequent 3−element itemsets L3 = {(2, 3, 5)}, and the frequent itemsets of all size

L = L1 ∪ L2 ∪ L3 = {(1), (2), (3), (4), (5), (1, 2), (2, 3), (2, 4), (2, 5), (3, 5), (2, 3, 5)}.

TID Items

100 (1, 2, 3, 4)
200 (1, 2, 3, 5)
300 (2, 3, 5)
400 (1, 2, 4, 5)
500 (2, 3, 4, 5)

Table 1.1: Transation database with 5 transations

One frequent itemsets have been found, we want to �nd out the relationship be-

tween these frequent itemsets, i.e., the assoiation rules generated from these frequent

itemsets. An assoiation rule is a if-then lause. For example, a rule an be like "if a

basket ontains items 1, 2, 3, then it probably ontains items 4, 5". In order to de�ne

how likely the if-then lause is evaluated to be true, we need to introdue the de�ni-

tion of on�dene. The on�dene of an assoiation rule is the probability that items

itemk+1,. . .,itemk+q are in the basket given a basket ontains items item1,. . .,itemk,

where the itemset itemk+1,. . .,itemk+q and the itemset item1,. . .,itemk are disjoint.

The Apriori algorithm, initially proposed by Agrawal et al. [1994℄, is one of the most

in�uential algorithms used to �nd frequent itemsets. Mumu and Ezeife [2014℄ exploit

the Apriori algorithm to infer ommunity preferenes (positive or negative) for a given

produt (e.g., iPhone) as input to standard in�uene maximization algorithms. The

ExAminer algorithm, introdued by Bonhi et al. [2003℄, is used to �nd frequent

itemsets whose size is no less than a user-spei�ed value. Goyal et al [2008℄ exploit

the ExAminer algorithm to disover ation leaders from online ommunity, whih is

the �rst frequent pattern based algorithm for in�uene maximization mining.

6
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1.3.2 Classi�ation Methods

Classi�ation is to lassify objets to their orresponding ategories. More preisely,

lassi�ation is the task of learning a target funtion f from a training set that maps

eah sample x in the test set to one of the prede�ned lass labels y. The target

funtion is also known as a lassi�ation model. (Soure: De�nition 4.1 on pages 146,

Pan et al. [2006℄.)

For example, given a training dataset in Table 1.2, and a test dataset in Table

1.3, lassi�ation is to learn a lassi�ation model from the training set, then apply

the learned model to the test set to lassify the nonoding RNA into two lasses:

pseudohairpin or pre-miRNA. The lassi�ation results are illustrated in Table 1.4.

feature 1 feature 2 lass label

69.07 1.04 pseudoHairpin

53.09 8.75 pseudoHairpin

55.45 0 pseudoHairpin

72.92 0 pseudoHairpin

43.02 12.94 pseudoHairpin

69.47 0 pre-miRNA

44.19 11.76 pre-miRNA

85.11 2.17 pre-miRNA

81.97 0 pre-miRNA

Table 1.2: The tiny nonoding RNA training dataset with 5 pseudoHairpin samples

and 4 pre-miRNA samples.

feature 1 feature 2 lass label

56.38 2.70 unknown

42.68 12.35 unknown

Table 1.3: The tiny nonoding RNA test dataset with 2 unknown samples.

feature 1 feature 2 lass label

56.38 2.70 pre-miRNA

42.68 12.35 pseudoHairpin

Table 1.4: The tiny nonoding RNA test dataset with 2 learned samples.

7
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Classi�ation algorithms inlude nearest neighbours (K-NN) whih was proposed

by Cover and Hart [1967℄, Naive Bayes lassi�er introdued by MCallum et al., [1998℄,

Support Vetor Mahine (SVM) proposed by Cortes and Vapnik [1995℄, deision trees

proposed by Quinlan [1986℄. In [Hu et al. 2014℄, the authors propose an algorithm

that exploits lassi�ation algorithms to takle the In�uene Maximization Problem

and uses the result of a greedy algorithm to train lassi�ers to diretly selet in�uential

nodes based on their features (Figure 1.2).

Figure 1.2: Classi�ation in In�uene Maximization. Soure: Figure 1 on Page 1, Hu

et al. [2014℄
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1.3.3 Clustering Methods

Clustering is to luster objets in groups suh that objets within a group are similar,

objets between groups are di�erent. That is, lustering tehniques are trying both to

maximize the similarity within a group and to maximize the di�erene between groups

[Tan et al. 2006℄. Clustering methods inlude the K-Means algorithm proposed by

MaQueen et al., [1967℄ and Agglomerative Hierarhial Clustering. We will brie�y

disuss them below.

K-Means. The input of K-means algorithm is a set of points. The K-Means algo-

rithm assumes there are k lusters in the point set (that is why it is alled K-means.)

K-means piks k points that are likely to be in di�erent lusters as the entroid for

eah luster. Then it assigns eah remaining point p in the point set to a luster suh

that the entroid of the luster to whih p is losest. After a point is added to a lus-

ter, the entroid of the luster is adjusted in order to take aount of the new point

[Ullman et al. 2011℄. In [Soni and Ezeife 2013℄, the authors improve the K-means al-

gorithm and propose a novel approah named Semanti non-parametri K-Means++

to automatially move emails from inbox to appropriate folders and sub-folders.

Hierarhial Clustering. In general, agglomerative (bottom-up) hierarhial lus-

tering starts with a set of points and eah point forms a luster. And there is a dis-

tane matrix storing the distanes between all pairs of points (i.e., lusters). Based

on the distane matrix, the algorithm hooses two points (i.e., lusters) with the min-

imum distane in the matrix, ombines them into one luster, omputes the distanes

between all pairs of the newly ombined luster and the old lusters, and use the

resulting distanes to update the distane matrix (Sine we ombine two lusters into

one, so the distane matrix is redued by one olumn and one row). The algorithm

repeats this proedure (i.e., hoosing two lusters with the minimum distane in the

distane matrix, ombining them into one luster, and updating the distane matrix)

until the minimum distane in the distane matrix is larger than a spei�ed threshold
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(whih means if the points in the luster are separated too far from eah other, the

algorithm would stop). In [Chen et al. 2014℄, the authors exploit the hierarhial

lustering algorithm to improve the e�ieny of mining in�uene maximization by

disovering the ommunity struture of the network to redue the searh spae for

in�uential nodes (Figure 1.3).

Figure 1.3: Classi�ation in In�uene Maximization. Soure: Figure 2 on Page 3,

Chen et al. [2014℄

1.4 Di�usion of Innovations and In�uene

Aording to Rogers [2010℄, one reason why the di�usion of innovations has been of

so muh interest to researhers is beause getting an innovation adopted is often very

di�ult. Rogers [2010℄ de�nes that di�usion is the proess by whih an innovation is

ommuniated through ertain hannels over time among the individuals of a soial

system. By innovation, he means a new idea or tehnology suh as Google's searh
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engine, a new pratie suh as water boiling in a Peruvian village, or a new produt

suh as Apple's iPhone. By ommuniation hannels, he means the means by whih

messages get from one individual to another. He ompares two ommuniation han-

nels, mass media hannels and interpersonal hannels as follows. On one hand, mass

media hannels inluding radio, television, newspapers, and so on, are e�ient means

to inform an audiene of potential adopters about the existene of an innovation. On

the other hand, interpersonal hannels like peer groups linking two or more individ-

uals who are near-peers are more powerful in persuading an individual to adopt an

innovation. By a soial system, he means a set of individuals or organization on-

neted to one another through relationships and interations suh as all the users on

Twitter. Rogers [2010℄ points out that most individuals tend to be less dependent

on the objetive evaluations by sienti� studies. Rather they adopt an innovation

mainly beause individuals from peers have previously adopted the innovation and

onveyed a subjetive evaluation of an innovation to them. Therefore, the di�usion of

innovations through soial networks is when individuals imitate their friends, friends

of friends, olleagues in the workplae or at shool, family members, aquaintanes

who have previously adopted an innovation by adopting the innovation as well, suh

adoptions will subsequently in�uene others who have onnetions with them. For

example, David wathes a new movie (here wathing a new movie indiates an inno-

vation.) He really likes it and blogs about the movie. David's friends Sean, Sibyl, and

Eva read his blog and go wath the movie as well. After that, the ation of wath-

ing the movie propagates reursively. Sean, Sibyl, and Eva in�uene their friends to

wath the movie, and so on, reating a asade of further wathing. The di�usion

proess will arry on until no more adoptions are possible. Suh hain reation by

words-of-mouth e�et in a soial network is alled viral marketing (also known as

diret marketing) beause the adoption of the innovation will widely spread out like

the way an epidemi spreads.
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1.5 In�uene Di�usion Models

In this setion, we will introdue four main in�uene di�usion models. But before

we do that, we will brie�y introdue some terminology used in existing in�uene

maximization researh.

De�nition 1.5.1. Innovation. In this thesis, an "innovation" indiates a new

tehnology, a new produt, a new idea, or a new behavior/ation. We use the term

innovation, tehnology, produt, idea, behavior and ation interhangeably.

De�nition 1.5.2. In�uene Di�usion. Also known as in�uene propagation.

Here, "di�usion" means "propagation". In this thesis, "di�usion" is a proess by

whih the adoption of an innovation propagates throughout a soial network from a

seed set (i.e., a small number of early adopters of the innovation) to the rowd. Infor-

mally, we an think of this as an in�uene (for performing ertain ations) propagating

from the seed set to the rowd [Goyal et al. 2008℄. Or di�usion is the outome of

in�uene [Ezeife 2014℄.

Two of the most basi and in�uential di�usion models are the Independent Cas-

ade model introdued by Goldenberg et al. [2001℄ and the Linear Threshold model

introdued by Granovetter [1978℄. Kempe et al. [2003℄ further formalized them to

what they are in present and proposed the General Threshold model and the General

Casade model, whih are broad generalizations of the Linear Threshold model and

the Independent Casade model respetively. The four di�usion models agree in the

following aspets. The di�usion models represent a soial network as a weighted,

direted graph G = (V,E). Eah node v ∈ V is an individual, eah edge (v, u) ∈ E is

an in�uene relationship from node v to node u indiating that node v exerts in�u-

ene on node u. Eah edge (v, u) ∈ E is assigned a non-negative probability pv,u or a

non-negative weight bv,u indiating the amount of the in�uene that node v exerts on

node u to adopt an innovation. The di�usion proess is dynami and progressive. By
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dynami we mean the di�usion proess happens in disrete steps, i.e., t = 0, 1, ..., n−1

(where n = |V |, the size of V ). At any time t, eah node v ∈ V has two states, ative

(meaning it has adopted an innovation) or inative (meaning it has not adopted the

innovation). By progressive we mean a node one beomes ative at time t, it will

remain ative as time goes by and annot swith bak to inative. If we use St to

denote the set of ative nodes at time t, then St−1 ⊆ St for t ≥ 1, that is, the set of

ative nodes is non-dereasing as time moves in disrete steps, this is the progressive

aspet of the di�usion. At time 0, there is an initial ative set S0 whih represents

a small set of in�uential nodes that adopts an innovation. The propagation proess

grows from there based on whih di�usion model we hoose. Sine the set of ative

nodes is non-dereasing as time goes by in disrete steps, and the set V is �nite, the

proess will stop on or before time n− 1 when no more ativations are possible. The

four di�usion models di�er in the way the in�uene of the neighborhood of a node v

exerts on it and in the way a deision is made by node v to adopt a new behavior.

They will be disussed brie�y immediately and in details in Chapter 2.

Independent Casade Model. The Independent Casade model represents a so-

ial network as a weighted, direted graph G = (V,E). Eah edge (v, u) ∈ E is

assigned a non-negative probability pv,u indiating the in�uene that node v exerts

on node u, that is if v is ative, it sueeds in ativating u with the probability of

pv,u. The di�usion proess happens in disrete steps, i.e., t = 0, 1, ..., n − 1 (where

n = |V |, the size of V ). At any time t, eah node v ∈ V is either ative or inative.

One v is ativated, it remains ative and annot swith bak to inative. At time 0,

there is an initial set S0 that adopts a new behavior and the di�usion proess unfolds

as follows. If a node v is ative, it is given one single hane to ativate eah of its

inative neighbors u with probability of pv,u. The di�usion proess will stop when no

more ativations are possible Kleinberg et al. [2007℄.

13
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Linear Threshold Model. The Linear Threshold model represents a soial net-

work as a weighted, direted graph G = (V,E). Eah edge (v, u) ∈ E is assigned a

non-negative weight bv,u indiating the in�uene that v exerts on u suh that the total

weight of u's neighbors is no greater than 1:
∑

v∈N(u) bv,u ≤ 1, where N(u) denotes

the set of neighbors of u. Eah node v ∈ V hooses uniformly at random a threshold

θv over the interval [0,1℄. Aording to Granovetter [1978℄, in Soiology, the threshold

of a node v is de�ned as the minimum proportion of its neighbors who have already

adopted a behavior (suh as joining a riot) that makes v adopt the behavior too. For

example, suppose v's threshold is 25%, v has 100 neighbors, and 26 of them have

joined a riot, sine 26/100 = 26% > 25%, v will join the riot too. A threshold of 0%

means v is so radial that he will join the riot even there is no one else doing so. A

threshold of 100% means v is so onservative that he will not join the riot even when

everyone else around him does so. In in�uene maximization problems, a threshold

of v, denoted as θv, intuitively indiates enough of its neighbors who have already

adopted a behavior in order for v to do so. The threshold of eah v ∈ V , denoted

as θv being hosen uniformly at random is intended to model our lak of knowledge

of the exat values [Kempe et al. 2003℄. The di�usion proess happens in disrete

steps, i.e., t = 0, 1, 2, ..., n − 1 (where n = |V |, the size of V ). At any time t, eah

node v ∈ V is either ative or inative. One v is ativated, it remains ative and

annot swith bak to inative. At time 0, there is an initial set S0 that adopts a new

behavior. At time t > 0, all nodes that were ative at time t− 1 remain ative, any

inative node u is ativated if the total weight of its ative neighbors is no less than

its threshold:

∑

active v∈N(u) bv,u ≥ θu. The proess will stop when no more ativations

are possible [Kleinberg et al. 2007℄.

General Threshold Model. The General Threshold model represents a soial net-

work as a weighted, direted graph G = (V,E). Eah node v ∈ V is assoiated with
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a threshold funtion fv. The threshold funtion fv(S) measures the joint in�uene

of v's ative neighbors S exerted on v, with fv(∅) = 0. Eah node v ∈ V hooses

uniformly at random a threshold θv over the interval [0,1℄. The di�usion proess hap-

pens in disrete steps, i.e., t = 0, 1, 2, ..., n− 1 (where n = |V |, the size of V ). At any

time t, eah node v ∈ V is either ative or inative. One v is ativated, it remains

ative and annot swith bak to inative. At time 0, there is an initial set S0 that

adopts a new behavior. At time t > 0, all nodes that were ative at time t−1 remain

ative, any inative node v is ativated if the threshold funtion of v is no less than

the threshold of v: fv(S) ≥ θv. The proess will stop when no more ativations are

possible. The Linear Threshold model disussed above is a speial ase of the General

Threshold model. In the Linear Threshold model, the threshold funtion of eah node

u ∈ V is de�ned as the total weight of its ative neighbors, fu(S) =
∑

v∈S bv,u, where

S denotes the set of ative neighbors of u, and bv,u is a non-negative weight on edge

(v, u) indiating the in�uene that v exerts on u suh that

∑

v∈N(u) bv,u ≤ 1, where

N(u) denotes the set of neighbors of u [Kempe et al. 2003℄.

General Casade Model. The General Casade model represents a soial network

as a weighted, direted graph G = (V,E). Eah node u ∈ V is assoiated with an

inremental funtion pu(v, S), where v is u's ative neighbor who has not tried to

in�uene u and S is the set of u's ative neighbors that have tried and failed in a-

tivating u, pu(v, S) measures the in�uene of v on u given that the set of u's ative

neighbors that have tried and failed in in�uening u. The di�usion proess happens

in disrete steps, i.e., t = 0, 1, 2, ..., n− 1 (where n = |V |, the size of V ). At any time

t, eah node v ∈ V is either ative or inative. One v is ativated, it remains ative

and annot swith bak to inative. At time 0, there is an initial set S0 that adopts

a new behavior and the di�usion proess unfolds as follows. If a node v is ative, it

ativates eah of its inative neighbors u with probability of pu(v, S). The proess
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will stop when no more ativations are possible. The Independent Casade model

disussed above is a speial ase of the General Casade model. In the Independent

Casade model, the inremental funtion of eah node u ∈ V is de�ned as the pairwise

in�uene probability from v to u, pv,u.

1.6 Submodular Funtions and Their Properties

The diminishing returns de�nition of submodular funtion is as follows: Given a set

of nodes V = {v1, ..., vn}, a funtion f : 2V → ℜ (where 2V is the power set of V )

is submodular if for any A ⊆ B ⊆ V and v ∈ V − B, (V − B means V exept B

or V \B), we have that: f(A ∪ {v}) − f(A) ≥ f(B ∪ {v}) − f(B). The left hand

side of the inequality means the marginal gain (or ost) of adding a node v in A, the

right hand side of the inequality means the marginal gain (or ost) of adding a node

v in B, the entire inequality says the marginal gain (or ost) of adding a node v in a

larger set (i.e., B) is less than or equal to the marginal gain (or ost) of adding v in

a smaller set (i.e., A). This is the diminishing return aspet of submodularity.

Example 1.6.1. Submodularity. Consider senario one. We have a network as

shown in Figure 1.4 (a). We plae two sensors S1 and S2 in the network to obtain

a plaement A = {S1, S2} as shown in Figure 1.4 (b), we an see the overage of

A = {S1, S2} is 8. After that, we add a new sensor S to plaement A to obtain a

plaement A′ = {S1, S2, S} as shown in Figure 1.4 (), we an see the additional (or

marginal) overage of the new sensor S is 8.

Now, onsider another senario. We have a network as shown in Figure 1.4

(a). We plae four sensors S1, S2, S3, and S4 in the network to obtain a plae-

ment B = {S1, S2, S3, S4} as shown in Figure 1.4 (d), we an see the overage of

B = {S1, S2, S3, S4} is 14. After that, we add a new sensor S to plaement B to
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obtain a plaement B′ = {S1, S2, S3, S4, S} as shown in Figure 1.4 (e), we an see the

additional (or marginal) overage of the new sensor S is 4.

Figure 1.4 is trying to say that the marginal gain of adding a new node S to

a smaller sett A = {S1, S2} is larger than the marginal gain of adding the same

node S to a larger set B = {S1, S2, S3, S4}. This is the diminishing return aspet of

submodularity.

S1 S111

S2 

Placement A={S1, S2} 

S’ 

New sensor: 

S2 

S1 

Placement A’={S1, S2, S} 

S 

S111

S222

S 
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S2 

Placement B={S1, S2, S3, S4} 

S’ 

New sensor: S4 S3 

Placement B’={S1, S2, S3, S4, S} 
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A network 

Figure 1.4: Diminishing Return of Submodular funtions. Adopted from Figure on

pages 8, Leskove [2007℄.

Submodular funtions have several properties. Of those properties, non-negative,

monotone submodular funtions are what we are interested in the ontext of in�uene

maximization. A non-negative, monotone submodular funtion is de�ned as follows:

A submodular funtion is monotone if it takes only non-negative values and it satis�es:

f(A ∪ {v}) ≥ f(A) for all elements v ∈ V and sets A ⊆ V . The left hand side of the

inequality means the gain (or ost) of adding a node v in A, the right hand side of
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the inequality means the gain (or ost) of A, the entire inequality says the gain (or

ost) of adding a node v in A ) would not derease the gain (or ost) of A.

Example 1.6.2. Monotoniity. From Figure 1.4, it is easy to see that the overage

of A′ = {S1, S2, S} whih is 16 (as shown in Figure 1.4 ()) is no less than that of

A = {S1, S2} whih is 8 (as shown in Figure 1.4 (b)).

1.7 In�uene Maximization and Its Appliations

Having notied the dynamis of spread of innovation unfold through a soial network,

a natural question to ask is how to maximize the spread of di�usion of the innova-

tion, i.e., the in�uene maximization problem. Before further disussing the in�uene

maximization problem, we will brie�y review some terminology used in this thesis.

De�nition 1.7.1. In�uene Spread. Given an initial ative set S0, the "in�uene

spread" (just "in�uene", or just "spread") of S0, denoted as σ(S0), is de�ned to be

the expeted number of �nal ative nodes at the end of the di�usion proess when no

more adoptions are possible. Here, σ(·) is a funtion, de�ned as σ : 2V → ℜ, mapping

a set (the seed set S0) to a real number (the expeted number of �nal ative nodes at

the end of the di�usion proess). On the other hand, the verb "in�uene" (as in node

v in�uenes node u) means "v ativates node u".

De�nition 1.7.2. In�uene Maximization. Let S0 denote an initial ative seed

set. Let σ(S0) denote the in�uene spread of the seed set S0. Given a soial graph

G = (V,E), a di�usion model, and an integer k, the in�uene maximization problem

is to �nd a seed set S0 ⊆ V of size at most k suh that σ(S0) is maximized under the

di�usion model.

Hardness of In�uene Maximization Problems. The in�uene Maximization

problem is proved to be NP-Complete, whih means no polynomial-time algorithm
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is known for it. If we an show the in�uene funtion σ(·) is a non-negative, mono-

tone submodular under a di�usion proess, then in�uene maximization problem boils

down to a submodular funtion maximization problem. However submodular funtion

maximization is proven to be NP-hard, therefore there is no known polynomial-time

algorithm for this problem. But it an be solved approximately with guarantees in

polynomial time aording to Theorem 2.1 in [Kempe et al. 2003℄. Aording to

Kempe et al. [2003℄, if the in�uene funtion σ(·) is a non-negative, monotone sub-

modular under a di�usion proess, then we an exploit a greedy algorithm to �nd

an approximation set S0 of size k in polynomial time and σ(S0) ≥ (1 − 1/e)σ(S∗
0),

where S∗
0 is the optimal set that maximizes the value of σ over all k-element sets and

e = 2.713. In other words, the seed set S0 found by the greedy algorithm provides a

63%-approximation to the in�uene maximization problem in polynomial time.

Appliations of In�uene Maximization. The most motivating appliation of

in�uene maximization is viral marketing. Unlike mass marketing where all potential

ustomers are targeted, viral marketing (also known as diret marketing) exploits data

mining tehniques to �nd out a handful of in�uential ustomers, by targeting them

(e.g., giving them free samples of the new produt), the rest of the viral marketing

would take are of itself through word-of-mouth e�et and the �nal adoption of the

new produt will reah a very large population of the network, like the spread of

an epidemi [Domingos and Rihardson 2001℄. Another appliations of in�uene

maximization is outbreak detetion. Suppose there are ontaminants spreading over

a water distribution network where nodes are pipe juntions and edges are pipes, we

want to �nd a few loations (pipe juntions) to plae sensors suh that ontaminants

an be deteted quikly and infet as few households as possible [Leskove 2007℄.

Similarly, suppose an epidemi (e.g., Ebola) spreads through a soial network where

nodes are people and edges are the interations between them, we want to �nd a small
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set of ontagious people to monitor suh that the disease an be deteted early and

infets as few people as possible (or save as many lives as possible) [Leskove 2007℄.

In the domain of blogsphere, where nodes are blog posts and edges are referenes, we

want to �nd a few well-written quality blogs to gain as muh information as possible

[Leskove 2007℄. In the setting of ollaboration networks, where nodes are researhers

and edges are ollaboration relationships, we want to �nd a few experts on a ertain

topi (e.g., database) [Tang et al. 2009℄. In the setting of friendship networks, where

nodes are individuals and edges are relationships, we want to �nd a few authoritative

people on a ertain produt (e.g., iPhone) [Mumu and Ezeife 2013℄.

1.8 Learning Pairwise In�uene Probabilities

In the studies of in�uene propagation in soial networks, researhers represent a

soial network as a direted weighted soial graph G = (V,E) in whih individuals

are represented by nodes and there is a direted edge (v, u) ∈ E from node v to

node u indiating the propagation of in�uene from v to u. Aording to Goyal et al.

[2010℄, real soial networks do not have edge weights indiating the in�uene proba-

bility pv,u with whih v in�uenes u. Therefore, most of the researhers in this area

assume the edge weights indiating the in�uene probabilities are given as input. In

their experiments, researhers adopt primarily four models of assigning pairwise in�u-

ene probabilities, i.e., the uniform model, the trivaleny model, the random asade

model, and the weighted asade model.

Uniform Model. In the uniform model, a uniform probability pv,u (e.g., 1%) is

assigned to eah edge (v, u) ∈ E in the soial graph. The uniform aspet means that

all nodes exert the same amount of in�uene to their neighbors.

Trivaleny Model. To di�erentiate the in�uene that eah node v ∈ V exerts on
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their neighbors, the trivaleny model assigns eah edge (v, u) ∈ E a probability pv,u

hosen uniformly at random from the set {0.1, 0.01, 0.001}.

Random Casade Model. Similar to the trivaleny model, the random asade

model assigns eah edge (v, u) ∈ E a probability pv,u hosen uniformly at random

from the interval [0,1℄ (rather than from a trilogy set).

Weighted Casade Model. Di�erent from the previous three models, the weighted

asade model takes the network struture into onsideration. In the weighted asade

model, eah edge (v, u) ∈ E is assigned an in�uene probability pv,u = 1/du where du

is the in-degree of u, i.e., the number of edges with u as their terminal vertex.

To ompute the in�uene probabilities in a more involved way, Goyal et al. [2010℄

study both the network struture and user ation logs. Goyal et al. [2010℄ takle the

problem of learning pairwise in�uene probabilities in soial networks and de�ne it

formally as follows: Given a graph G = (V,E, T ) derived from a soial network where

v ∈ V represents a user, an undireted edge (u, v) ∈ E represents a soial tie between

user u and user v, T : E → N is a funtion mapping an edge to a timestamp at

whih the soial tie is reated, along with an ation log Actions(User, Action, T ime),

whih is a relation ontaining tuples in the form of (u, a, tu) indiating user u ∈ V

performs ation a ∈ A (where A denotes the universe of ations) at time tu (for

example, David wathed the movie The Long Ranger at time 5) we want to learn

a funtion p : E → [0, 1] × [0, 1] suh that eah edge (v, u) ∈ E is mapped to two

in�uene probabilities pv,u (indiating the probability with whih v in�uenes u) and

pu,v (indiating the probability with whih u in�uenes v). Goyal et al. [2010℄ use

Flikr soial network to onstrut the ations log and onsider joining a group as the

ation. For example, to ompute the pairwise in�uene probability pv,u, �rst user

u and user v need to beome friends before the in�uene propagates from v to u,

then the probability that v an in�uene u to adopt an ation (i.e., joining a group)

pv,u = #groups that u joins after v joins

#groups that v joins
. Based on their researh, Ahmed and Ezeife [2013℄
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propose a new tehnique whih mines the ation log to �nd frequent patterns of ation

performed by both trusted and distrusted users and use the positive/negative patterns

to learn both positive and negative in�uene probability under Bernoulli distribution.

1.9 Fundamental Twitter Terminology

In our solution framework, we learn in�uene probabilities from Twitter. Therefore,

we would like to introdue fundamental twitter terminologies for the readers to better

understand how we rawl Twitter to load data and perform data analysis. As a

blogger, we an publish blog posts on blog platforms, to name a few, WordPress,

Blogger or Tumblr. Likewise, a Twitter user an post miroblogs alled tweets on

Twitter under their aounts. By miro, it means that eah tweet onsists of at

most 140 haraters. In addition to the 140-harater text ontent, eah tweet may

onsist of one or more of the following entities: mention, reply, retweet, hashtag, or

URL. For example, the following tweet mentions �saradewitt, inludes the hash tag

#SXSWedu, and provides the URL pbskids.org/lab.

Figure 1.5: A tweet inludes mention, hash tag and URL.

Figure 1.6: A reply.

Given a tweet, you an

• Reply it by liking the Reply button on the tweet. And your reply will beome

a tweet whih ontains "�username" at the beginning of the tweet as shown in
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Figure 1.7: A reply.

Figure 1.8: A mention.

Figure 1.9: A retweet.
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Figure 1.6. When you lik on the tweet, you an �nd out to whih tweet you

replied as shown in Figure 1.7.

• Retweet it by liking the Retweet button on the tweet to propagate the orig-

inal tweet to all of your followers (whih is an o�ial way to quote another

user's tweet). Your retweet will beome a tweet whih looks like the one shown

in Figure 1.9.

• Favorite it by liking the Favorite button on the tweet, indiating you like or

are interested in the tweet.

Given a twitter aount, you an

• Follow her/him, indiating you know, admire, or want to be friends with

her/him. Intuitively, following or admiring, as a binary relation R over a uni-

versal set of Twitter users is transitive if whenever user a admires user b, and b

in turn admires user , then a also admires . Twitter uses this transitivity to

reommend Twitter users followed by those whom you are following for you to

follow. Another thing to know about "follow" on Twitter is its asymmetry, i.e.,

you an follow anyone you like on Twitter without invitation or aeptane, but

your followings do not have to follow you bak, and most of the time they do

not even know you exist.

• Mention her/him by ontaining "�username" anywhere in the body of your

tweet, indiating you like their tweets. A tweet inluding mention is shown in

Figure 1.8.

Remark 1.9.1. Sine a reply ontains "�username" at the beginning of the tweet, a

mention ontains "�username" anywhere in the tweet, therefore a reply is a speial

instane of a mention.
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1.10 Thesis Contribution

Reent researh in in�uene di�usion models has primarily foused on di�usion of

single innovation asade. However in the real world, there usually are multiple

innovations ompeting within a soial network [Zhang et al. 2014℄, for example, the

launh of Apple's iPhone 6 to a market where Google's Nexus 5, Samsung's Galaxy

S5, Blakberry's Q10, and so on already exist. In the setting of single in�uene

di�usion models, there is only one tehnology (say tehnology A standing for Apple)

in the network. We represent the underlying soial network (the medium for the

propagation of tehnology A) as G = (V,E), where V represents individuals, E

represents interations between them. Initially (at time 0), there is only one seed set

S0 (i.e., a small number of early adopters of tehnology A). The adoption of tehnology

A propagates throughout the soial network from the seed set S0 to the rowd. In the

thesis, we extend the existing single in�uene di�usion to two in�uene di�usions. In

the setting of two in�uene di�usions models, there are two tehnologies (tehnology

A standing for Apple and tehnology B standing for Blakberry) in the network.

We suppose tehnology B omes in the network �rst. There are two aspets to this

extension. (1) We are studying in�uene maximization in the setting of two in�uene

di�usions, the di�erent setting determines a di�erent input for the algorithm. The

input for the thesis problem (to �nd an in�uential seed set SA
0 of size k in the network

where the seed set SB
0 already exists) is the soial network G = (V,E), a seed set

for tehnology B SB
0 , and a budget k for the size of a seed set for tehnology A

SA
0 , while the input for in�uene maximization under single in�uene di�usion is the

soial network G = (V,E) and a budget k for the size of a seed set for tehnology

A SA
0 . (2) In the setting of two in�uene di�usions, the two in�uenes propagate in

a ompetitive way. Eah node has four states in the two in�uene di�usion models,

A meaning adopting tehnology A, B meaning adopting tehnology B, AB meaning

adopting both A and B, 0 meaning adopting neither tehnology A nor tehnology B.
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During the two in�uene di�usions proess, one an inative node v beomes ative,

say A-ative (meaning adopting tehnology A), it annot swith to other states (i.e.,

B, AB, or 0). This is the ompetitive aspet of the two in�uene difussions. This is

beause one a node v beomes, say A-ative, it annot swith to B, whih means it

bloks the in�uene propagation of tehnology B. The reason why existing algorithms

like CELF whih run in the single in�uene di�usion model annot be diretly applied

under the two in�uene di�usion model is that the two in�uene di�usions unfold in

a ompeting and random way. If the two di�usions unfold in a non-ompeting way,

i.e., a B-node an swith to A, then we an simply apply CELF to �nd A-nodes in

the graph using the parameters for in�uene A (suh as pA(v, u), θA, whih will be

explained in Chapter 3). However, the di�usions unfold in a ompeting way, e.g.,

one a node beomes B-ative, it annot swith to A. If the two di�usions unfold in a

deterministi way, then we an simply apply CELF to �nd A-nodes in the sub-graph

that does not inlude B-nodes. However, the two di�usions unfold in a random way

(beause eah node hooses uniformly at random two thresholds over [0,1℄), there is

no way to know whih nodes would beome B-nodes.

Seond, in the studies of in�uene propagation in soial networks, researhers

represent a soial network as a direted weighted soial graph in whih individuals

are represented by nodes and there is a direted edge from node v to node u if v an

in�uene u with the probability indiated as the edge weight. Goyal et al. [2010℄

point out that most of the researhers in this area assume the in�uene probabilities

as the edge weights are given as input and ignore how the probabilities an be derived

from soial network data, i.e., user ation logs. Goyal et al. [2010℄ use Flikr soial

network to onstrut the ations log and onsider joining a group as the ation.

For example, Goyal et al. [2012℄ ompute the probability that v an in�uene u as

pv,u = #groups that u joins after v joins

#groups that v joins
. Based on their researh, Ahmed and Ezeife [2013℄

propose a new tehnique whih mines the ation log to �nd frequent patterns of
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ation performed by both trusted and distrusted users and use the positive/negative

patterns to learn both positive and negative in�uene probability under Bernoulli

distribution. Ahmed and Ezeife [2013℄ use Epinions to onstrut the ations log and

onsider rating a user's produt review as the ation. They learn the pairwise in�uene

probability from Epinions and onsider rating a user's review as an ation. They

de�ne the probability that v in�uenes u as p+v, u = #reviews u rates the same as v

#reviews v rates
, and

the probability that u is not in�uened by v as p−v, u = #reviews u rates not the same as v

#reviews v rates
.

In this thesis, the underlying soial network we are studying is Twitter. We use

MLE under Bernoulli distribution (as done in [Goyal et al. 2010℄ and [Ahmed and

Ezeife, 2013℄) to estimate the probability that u retweets v, the probability that u

replies v, and the probability that u mentions v. We assume the probability that u

retweets/replies/mentions v's tweets is the probability that v in�uenes u to perform

an ation.

Contributions. Motivated by these limitations, the formal problem de�nition we

propose to takle is as follows:

Thesis Problem De�nition 1.10.1. Let SA
0 be the seed set for tehnology A, SB

0

the seed set for tehnology B. The in�uene spread for tehnology A of two seed sets

SA
0 and SB

0 under the CGT model, denoted as σA(SA
0 , S

B
0 ), is de�ned as the expeted

number of A-nodes at the end of the di�usion proess.

Given a direted soial network G = (V,E), a non-negative budget k, a seed set of B-

nodes SB
0 , and CGT model, the problem of �nding in�uential A-nodes when tehnology

B already exists in the network is to �nd a seed set SA
0 as early adopters of tehnology

A of size at most k suh that σA(SA
0 , S

B
0 ) is maximum.

The main ontributions of thesis are as follows:

1. We propose a new well-de�ned di�usion model named Competing General

Threshold (CGT) model whih allows more than one ompeting innovation
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(e.g. Apple as A when Blakberry as B is already in the market) to propagate

in soial networks under the CGT model, whih makes it more general and

natural

2. In order to ompute the pairwise in�uene probabilities, we use Bernoulli Maximum-

Likelihood Estimation for Twitter soial network to onstrut the formula of the

pairwise in�uene probabilities, then we use relational algebra operators left-join

and projetion on Twitter datasets to retrieve the parameters in the in�uene

probabilities formula

3. We extend the existing threshold funtion [Goyal et al. 2010℄ under the single

in�uene di�usion to de�ne both A and B threshold funtions under the CGT

model

4. We laim that the in�uene spread funtion for A under our CGT model is a

monotone, non-submodular funtion

5. We propose a new algorithm, gtMineA, based on the greedy algorithm [Kempe

et al. 2003℄ and the loal searh algorithm [Ahmed and Ezeife 2013℄ to �nd

in�uential A-nodes in ompetitive soial networks under the CGT model in

polynomial time

6. We perform in depth analysis of our proposed solution using real life dataset

olleted from Twitter. In terms of the quality of seeds seleted, our experiments

show that gtMineA outperforms CELF by 15%
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Chapter 2

Related Works

In�uene maximization was �rst introdued by Domingos and Rihardson [2001℄.

Domingos and Rihardson [2001℄ state that unlike mass marketing where all potential

ustomers are targeted, diret marketing exploits data mining tehniques to �nd

out a handful of in�uential ustomers and targeting them, the rest of the diret

marketing would take are of itself through word-of-mouth network, like the spread

of an epidemi. To do that, they propose a general framework by modeling markets

as soial networks, and modeling soial networks as Markov random �elds where

the probability that eah ustomer adopts a new produt is a funtion of both how

muh a ustomer feels desire for the produt and the in�uene exerted by other

ustomers. In addition, they make an important point that in�uene maximization

depends not only on the in�uential individuals but also on the struture and ontext

of the entire network. The problem of maximizing the spread of in�uene through a

soial network was then formalized by Kempe et al. [2003℄. They �rst disuss two

basi di�usion models, i.e., the Linear Threshold model and the Independent Casade

model. They then de�ne the in�uene (spread) of a seed set S0, denoted as σ(S0), to

be the expeted number of nodes who adopt the innovation at the end of the di�usion

proess. They next de�ne the in�uene maximization problem as follows: Given a
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graph G = (V,E) derived from a soial network, a budget k, the task is to �nd a k-

element seed set S0 over all k-element set ⊆ V suh that σ(S0) is maximized, that is S0

yields the maximum in�uene on all nodes ∈ V −S0 by getting the maximum expeted

number of ative nodes at the end of the di�usion proess. They adopt a hill-limbing

algorithm and propose an e�ient approximation solution whih runs in polynomial

time under both the Linear Threshold Model and the Independent Casade Model.

Based on the greedy algorithm proposed by Kempe et al. [2003℄, Leskove et al. [2007℄

propose an e�ient greedy algorithm named CELF working under both the Linear

Threshold model and the Independent Casade model, speeding up the original greedy

algorithm by 700 times. The highlight of CELF is that the authors exploit the nie

properties of submodular funtions to signi�antly prune the number of iterations

needed for in�uene estimation of a new andidate. In the setting of blogshpere,

Agarwal et al. [2008℄ propose a novel approah to disovering in�uential bloggers

by de�ning in�uene sore for eah blogger using the number of their blogs' inlinks,

the number of omments their blogs reeive, the number of their blogs' outlinks,

and the length of the blog post. Goyal et al. [2011℄ develop an algorithm alled

SIMPATH for in�uene maximization under the Linear Threshold model. SIMPATH

is an iterative method, building on the CELF [Leskove et al. 2007℄, i.e., it exploits

the lazy forward optimization proposed by CELF to selet seeds iteratively. Unlike

CELF, SIMPATH optimizes the spread estimation proess in three key novel ways.

In addition, it enhanes the quality of the seletion of seed set where they measure the

quality of seed set on the basis of the spread of in�uene, i.e., the wider its spread, the

better its quality. However, neither Linear Threshold model nor Independent Casade

model takles in�uene maximization problem in signed soial networks. To �ll the

gap, Ahmed and Ezeife [2013℄ propose a general framework named TGT where both

positive relationships and negative relationships are onsidered and propose a new

algorithm named MineSeedLS (as CELF-like algorithms annot be applied to TGT
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model) to disover in�uential nodes under the TGT. In [Mumu and Ezeife 2014℄, the

authors propose a model named OBIN, whih takes as input a soial network graph

G = (V,E) and a produt z and outputs an in�uene graph Gz(V,E) for a produt

z from omputed ommunity preferene where V is a sub-graph of the entire soial

network G ontaining only the relevant nodes to a ertain produt. The authors then

perform in�uene maximization algorithms in the sub-graph ontaining only relevant

nodes to a ertain produt. Aording to Goyal et al. [2010℄, real soial networks do

not have edge weights indiating the in�uene probability pv,u with whih v in�uenes

u. Therefore, most of the researhers in this area assume the edge weights indiating

the in�uene probabilities are given as input. Goyal et al. [2010℄ point out that

although the real soial network do not have the pairwise in�uene probability pv,u

expliitly as the edge weight on (v, u) ∈ E, the probabilities an be derived from

soial network data, i.e., user ation logs. We will disuss eah of these papers in this

hapter.

2.1 In�uene Maximization

2.1.1 Maximizing the Spread of In�uene through a Soial

Network

In [Kempe et al. 2003℄, the authors state that the motivation for researhers to study

in�uene maximization omes from viral marketing, a marketing tehnique suh that

if a ompany wants to market a new produt in the population, instead of targeting all

possible ustomers, they would like to target a small set of in�uential people who have

the ability of spreading the adoption of the new produt to the rowd. Here, "target"

means giving free samples of their new produt to an individual. The question is who

should they target in order to trigger the maximum �nal adoptions, i.e., the in�uene

maximization problem?
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The authors propose several di�usion models whih desribe how the dynamis of

adoptions propagate throughout the soial network, inluding the Linear Threshold

model, the Independent Casade model, and the General Threshold model as follows:

Linear Threshold Model. The Linear Threshold model represents a soial net-

work as a weighted, direted graph G = (V,E). Eah edge (v, u) ∈ E is assigned

a non-negative weight bv,u indiating the in�uene that v exerts on u suh that

∑

v∈N(u) bv,u ≤ 1, where N(u) denotes the set of neighbors of u. Eah node v ∈ V

hooses uniformly at random a threshold θv over the interval [0,1℄. The di�usion pro-

ess happens in disrete steps, i.e., t = 0, 1, 2, ..., n−1. At any time t, eah node v ∈ V

is either ative or inative. One v is ativated, it remains ative and annot swith

bak to inative. At time 0, there is an initial set S0 that adopts a new behavior. At

time t > 0, all nodes that were ative at time t− 1 remain ative, any inative node

u is ativated if the total weight of its ative neighbors is no less than its threshold:

∑

active v∈N(u) bv,u ≥ θu. The proess will stop when no more ativations are possible

[Kleinberg et al. 2007℄.

Example 2.1.1. Linear Threshold Model. We use Figure 2.1 to illustrate how

the Linear Threshold Model works.

Let St denote the set of ative nodes at time t, t = 0, 1, 2, ..., n−1. Then V −St−1

denotes the set of inative nodes at time t. At time 0 (Figure 2.1 (a)), there is a

soial network G = (V,E), along with an initial set of ative node(s), i.e., S0 = {1}.

At time 1, node 1 ativates node 2 sine p1,2 = 1.0 and θ2 = 0.5, but fails to ativate

node 3 sine p1,3 = 0.1 and θ3 = 0.5 (Figure 2.1 (b)). At time 2, nodes 1 and 2 jointly

ativate node 3 sine p1,3 + p2,3 = 0.1 + 0.4 = 0.5, and θ3 = 0.5 (Figure 2.1 ()).

At this point, the di�usion stops sine no more ativations are possible. From Figure

Figure 2.1 (), we an see the in�uene spread of {1} is 3, the number of ative nodes

at the end of the di�usion.

Independent Casade Models. The Independent Casade model represents a
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Figure 2.1: Linear Threshold Model

soial network as a weighted, direted graph G = (V,E). Eah edge (v, u) ∈ E is

assigned a non-negative probability pv,u indiating the in�uene that node v exerts

on node u, that is if v is ative, it sueeds in ativating u with the probability of

pv,u. The di�usion proess happens in disrete steps, i.e., t = 0, 1, ..., n− 1. At any

time t, eah node v ∈ V is either ative or inative. One v is ativated, it remains

ative and annot swith bak to inative. At time 0, there is an initial set S0 that

adopts a new behavior and the di�usion proess unfolds as follows. If a node v is

ative, it is given one single hane to ativate eah of its inative neighbors u with

probability of pv,u. By only one hane, we mean that if v, one of u
′s ative neighbors,

attempts to ative u at time t, regardless of whether v sueeds or not, v will not be

granted another attempt to ativate u in the following steps, i.e., v is not ontagious

to u anymore. If u has more than one ative neighbors, eah of its ative neighbors

will be given only one hane to ativate u, one at a time and in an arbitrary order.

The di�usion proess will stop when no more ativations are possible [Kleinberg et

al. 2007℄.

Example 2.1.2. Independent Casade Models. We use Figure 2.2 to illustrate
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how the Independent Casade model works.
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Figure 2.2: Independent Casade Model.

Let St denote the set of ative nodes at time t, t = 0, 1, 2, ..., n− 1, with S−1 = 0.

Then V − St−1 denotes the set of inative nodes at time t. At time 0 (Figure 2.2

(a)), there is a soial network G = (V,E), along with an initial set of ative node(s),

i.e., S0 = {1}. At time 1, node 1 ativates node 2 sine we �ip a biased oin with

the probability p1,2 = 1.0 to get a head for the in�uene propagation from node 1 to

node 2, and we get a head, but fails to ativate node 3 sine we �ip a biased oin with

the probability p1,3 = 0.9 to get a head for the in�uene propagation from node 1 to

node 3, and we get a tail (Figure 2.2 (b)). At time 2, nodes 2 ativates node 3 sine

we �ip a biased oin with the probability p2,3 = 0.4 to get a head for the in�uene

propagation from node 2 to node 3, and we get a head (Figure 2.2 ()). At this point,

the di�usion stops sine no more ativations are possible. From Figure Figure 2.2

(), we an see the in�uene spread of {1} is 3, the number of ative nodes at the end

of the di�usion.

General Threshold Model. The General Threshold model represents a soial

network as a weighted, direted graph G = (V,E). Eah node v ∈ V is assoiated
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with a threshold funtion fv. fv(S)measures the joint in�uene of v's ative neighbors

S exerted on v, with fv(∅) = 0. Eah node v ∈ V hooses uniformly at random a

threshold θv over the interval [0,1℄. The di�usion proess happens in disrete steps,

i.e., t = 0, 1, 2, ..., n− 1. At any time t, eah node v ∈ V is either ative or inative.

One v is ativated, it remains ative and annot swith bak to inative. At time 0,

there is an initial set S0 that adopts a new behavior. At time t > 0, all nodes that

were ative at time t−1 remain ative, any inative node v is ativated if fv(S) ≥ θv.

The proess will stop when no more ativations are possible. The Linear Threshold

model disussed above is a speial ase of the General Threshold model. In the Linear

Threshold model, the threshold funtion of eah node u ∈ V is de�ned as the total

weight of its ative neighbors, fu(S) =
∑

v∈S bv,u, where S denotes the set of ative

neighbors of u, and bv,u is a non-negative weight on edge (v, u) indiating the in�uene

that v exerts on u suh that
∑

v∈N(u) bv,u ≤ 1, where N(u) denotes the set of neighbors

of u [Kempe et al. 2003℄.

Example 2.1.3. General Threshold Model. We use Figure 2.3 to illustrate how

the General Threshold model works.
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Figure 2.3: General Threshold Model
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Let St denote the set of ative nodes at time t, t = 0, 1, 2, ..., n−1. Then V −St−1

denotes the set of inative nodes at time t. There are various ways to de�ne the

threshold funtion of node u, fu. In this example, we de�ne the threshold funtion of

node u as fu = 1 −
∏

v∈N(u)∩St−1
(1 − pv,u), where N(u) denotes the set of neighbors

of node u, and N(u) ∩ St−1 denotes the set of ative neighbors of node u at time

t. At time 0 (Figure 2.3 (a)), there is a soial network G = (V,E), along with

an initial set of ative node(s), i.e., S0 = {1}. At time 1, node 1 ativates node

2 sine p1,2 = 1.0 and θ2 = 0.5, but fails to ativate node 3 sine p1,3 = 0.1 and

θ3 = 0.5 (Figure 2.3 (b)). At time 2, nodes 1 and 2 jointly ativate node 3 sine

f3({1, 2}) = 1− (1− 0.15)(1− 0.35) = 0.4475, and θ3 = 0.4 (Figure 2.3 ()). At this

point, the di�usion stops sine no more ativations are possible. From Figure Figure

2.3 (), we an see the in�uene spread of {1} is 3, the number of ative nodes at the

end of the di�usion.

Then the authors de�ne the problem of maximizing the in�uene spread through

a soial network formally as follows:

Given a graph G = (V,E) derived from a soial network and a budget k. Let

S0 ⊆ V denote the initial seed set of ative nodes. Let σ(S0) denote the in�uene

spread of a seed set of nodes S0, i.e., the expeted number of ative nodes at the end

of the di�usion proess with S0 be the initial seed set at the beginning of the di�usion

proess, with σ(∅) = 0. We would like to �nd a k-element set S0 over all k-element

set ⊆ V suh that σ(S0) is maximum.

The authors show that the in�uene maximization problem is NP-hard under

both the Linear Threshold model and the Independent Casade model. But it an be

solved approximately with guarantees in polynomial time aording to Theorem 2.1 in

[Kempe et al. 2003℄. Aording to Kempe et al. [2003℄, if the in�uene spread funtion

σ(·) is a non-negative, monotone submodular under a di�usion proess, then we an

exploit a greedy algorithm to �nd an approximation set S0 of size k in polynomial
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time and σ(S0) ≥ (1−1/e)σ(S∗
0), where S

∗
0 is the optimal set that maximizes the value

of σ over all k-element sets and e = 2.713. In other words, S0 found by the greedy

algorithm provides a 63%-approximation to the in�uene maximization problem in

polynomial time.

The authors show that the resulting in�uene spread funtion σ(·) is submodular

under both the Linear Threshold Model and the Independent Casade Model and

present a Greedy Clibming Hill algorithm.

Example 2.1.4. Climbing Hill Algorithm. We illustrate how the Greedy Climbing

Hill algorithm works under the LT model through an example shown in Figure 2.4.
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Edge Weights pv,u
p1,2 = 0.05
p1,6 = 0.1
p2,1 = 0.05
p2,6 = 0.05
p3,2 = 0.05
p4,1 = 0.05
p4,3 = 0.1
p4,5 = 0.05
p5,2 = 0.1
p5,3 = 0.05
p5,4 = 0.05
p6,3 = 0.1

Thresholde θv: θ1 = θ2 = θ3 = θ4 = θ5 = θ6 = 0.1

Figure 2.4: A Soial Network

In the soial network G = (V,E) shown in Figure 2.4, there are 6 nodes and 12

edges onneting them. Eah node v is assoiated as a threshold θv, eah edge (v, u)

is assigned an edge weight pv,u. We set our budge k = 2, meaning we are looking for

2 in�uential nodes from this network. Greedy algorithm works as follows. Initially,

it sets the seed set S to ∅. In the �rst pass, it evaluates the marginal gain of adding
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Node Marginal Gain

1 σ({1} ∪ ∅)− σ(∅) = 4
2 σ({2} ∪ ∅)− σ(∅) = 1
3 σ({3} ∪ ∅)− σ(∅) = 1
4 σ({4} ∪ ∅)− σ(∅) = 2
5 σ({5} ∪ ∅)− σ(∅) = 2
6 σ({6} ∪ ∅)− σ(∅) = 2

Table 2.1: Iteration One of Greedy

Node Marginal Gain

2 σ({1} ∪ {2})− σ({1}) = 0
3 σ({1} ∪ {3})− σ({1}) = 0
4 σ({1} ∪ {4})− σ({1}) = 1
5 σ({1} ∪ {5})− σ({1}) = 1
6 σ({1} ∪ {6})− σ({1}) = 0

Table 2.2: Iteration Two of Greedy

node 1 to S0 = ∅, the marginal gain of adding node 2 to S0 = ∅,..., the marginal gain

of adding node 6 to S0 = ∅, with σ(∅) = 0, the results are shown in Table 2.1. It

piks the node with the maximum marginal gain, whih is node 1, and adds it to the

seed set. At this moment, S0 = {1} In the seond pass, it evaluates the marginal gain

of adding node 2 to S0 = {1}, the marginal gain of adding node 3 to S0 = {1},...,

the marginal gain of adding node 6 to S0 = {1}, the results are shown in Table 2.2.

It piks the node with the maximum marginal gain, whih is node 4 (or node 5), and

adds it to the seed set. Now, S0 = {1, 4}. Sine k = 2, and we have found two

in�uential nodes 1 and 4, we are done.

2.1.2 CELF

In [Leskove et al. 2007℄, the authors proposed an e�ient algorithm named CELF

whih ahieves the same results but runs 700 times faster than the original greedy

algorithm proposed by [Kempe et al. 2003℄. We use the exat soial network used in

illustrating the Greedy algorithm in setion 2.2, to show how CELF works under the

LT model. In the soial network G = (V,E) shown in Figure 2.4, there are 6 nodes

and 12 edges onneting them. Eah node v is assoiated as a threshold θv, eah

edge (v, u) is assigned an edge weight pv,u. We set our budge k = 2, meaning we are

looking for 2 in�uential nodes from this network. CELF works as follows. Initially, it

sets the seed set to ∅. In the �rst pass, CELF works in the same way as the Greedy

algorithm. It evaluates the marginal gain of adding node 1 to ∅, the marginal gain
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of adding node 2 to ∅,..., the marginal gain of adding node 6 to ∅, with σ(∅) = 0, the

results are shown in Table 2.3. It piks the node with the maximum marginal gain,

whih is node 1, and adds it to the seed set. In the seond passes, it does something

di�erent from the Greedy algorithm. Instead of evaluating the in�uene spread of all

the ombinations (i.e., {1, 2}, {1, 3},{1, 4},{1, 5},{1, 6}), CELF sorts the nodes 2, 3,

4, 5, 6 by the marginal gain of adding them to ∅, piks the node with the maximum

marginal gain whih is node 4 and evaluates the marginal gain of adding node 4 to

{1}, whih is 1. Then it piks the node with the seond maximum spread whih is

node 5, and evaluates the marginal gain of adding node 5 to {1}, whih is 1. Then

it piks the node with the third maximum spread whih is node 6, and evaluates the

marginal gain of adding node 6 to {1}, whih is 0. At this moment, we an stop

without ontinuing evaluating the marginal gain of adding node 2 to {1} and the

marginal gain of adding node 3 to {1}. The reason why we an stop from there is

that the in�uene spread funtion σ(·) is submodular under the Linear Threshold

Model. Aording to the diminishing return of submodularity, we know

σ({2} ∪ ∅)− σ(∅) = 1

≥ σ({2} ∪ {1})− σ({1})

σ({3} ∪ ∅)− σ(∅) = 1

≥ σ({3} ∪ {1})− σ({1})

Therefore, neither σ({2}∪{1})−σ({1}) nor σ({3}∪{1})−σ({1}) is greater than

1, whih is the urrent maximum marginal gain of adding node 4 to {1}.
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Node Marginal Gain

1 σ({1} ∪ ∅)− σ(∅) = 4
4 σ({4} ∪ ∅)− σ(∅) = 2
5 σ({5} ∪ ∅)− σ(∅) = 2
6 σ({6} ∪ ∅)− σ(∅) = 2
2 σ({2} ∪ ∅)− σ(∅) = 1
3 σ({3} ∪ ∅)− σ(∅) = 1

Table 2.3: Iteration One of CELF

Node Marginal Gain

4 σ({1} ∪ {4})− σ({1}) = 1
5 σ({1} ∪ {5})− σ({1}) = 1
6 σ({1} ∪ {6})− σ({1}) = 0

Table 2.4: Iteration Two of CELF

2.1.3 SIMPATH

In [Goyal et al. 2011℄, the authors state that in�uene maximization is one of the

fundamental problems in the area of in�uene propagation in soial networks. The

authors state that the motivation for researhers to study in�uene maximization

omes from viral marketing, a marketing tehnique of giving free samples of a new

produt to a handful of in�uential people who spread the adoption of the new produt

to the rowd. Aording to the authors, the problem of in�uene maximization is

to selet k nodes suh that by ativating them, the expeted spread of in�uene is

maximized. The input of in�uene maximization algorithms is a soial graph with

in�uene probabilities of edges, the output of in�uene maximization algorithms is a

k-node seed set [Goyal et al. 2011℄.

Under the Linear Threshold model, the authors establish a fundamental result

whih serves as the basis of the SIMPATH algorithm. The result says that the spread

of a set of nodes an be derived from the sum of spreads of eah node in the set on

appropriate indued subgraph. In order to estimate the spread of a seed set, the au-

thors ompute the spread by making a list of the simple paths starting from the seed

nodes, rather than using the omputationally expensive Monte Carlo simulations. In

order to redue the number of spread estimation alls in the �rst iteration, the authors

propose a novel optimization alled VERTEX COVER OPTIMIZATION, whih ad-

dresses a key shortoming of the simple greedy algorithm that CELF [Leskove et al.

2007℄ does not address. In order to redue the running time of the spread estimation
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proess in the subsequent iterations, the authors propose another novel optimization

alled LOOK AHEAD OPTIMIZATION. More preisely, at the beginning of eah it-

eration, the optimization generates top− l most promising seed andidates and shares

the marginal gain of those andidate seeds.

The authors develop an algorithm alled SIMPATH for in�uene maximization

under the linear threshold model. SIMPATH is an iterative method, building on the

CELF [Leskove et al. 2007℄, i.e., it exploits the lazy forward optimization proposed

by CELF to selet seeds iteratively. Unlike CELF, SIMPATH optimizes the spread

estimation proess in three key novel ways. In addition, it enhanes the quality of

the seletion of seed set where they measure the quality of seed set on the basis of

the spread of in�uene, i.e., the wider its spread, the better its quality.

The authors �rst introdue the properties of Linear Threshold model, whih serves

as the basis of SIMPATH. Reall that in the Linear Threshold model a node v piks at

most one of its inoming edge with a probability of bv,w. Then the seleted edge is on-

sidered live, the unseleted edges are onsidered bloked. Let X denote one possible

set of outomes on the edges (for example, {edge1 : live, edge2 : live, edge3 : blocked...})

and σX(S) denote the number of nodes that an be reahed from S via live paths (a

live path onsists of only live edges) in X . Then, by the de�nition of the spread of S,

σ(S) =
∑

X

Pr[X ] · σX(S) (2.1)

σX(S) =
∑

v∈V

I(S, v,X) (2.2)

I(S, v,X) =











1 if there is a live path in X from any node in S to v

0 otherwise

(2.3)
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Substitute equations 2.2 and 2.3 to 2.1, we obtain

σ(S) =
∑

v∈V

∑

X

Pr[X ] · I(S, v,X) =
∑

v∈V

ΥS,v (2.4)

x
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0.3

0,2

0.5

Figure 2.5: A weighted, direted graph G = (V,E) derived from a soial network.

Soure: Figure 2 on Page 213, Goyal et al. [2011℄.

Theorem 2.1.1. In the LT model, the spread of a set S is the sum of the spread of

eah node u ∈ S on subgraphs indued by V − S + u. That is,

σ(S) =
∑

u∈S σ
V−S+u(u)

(Soure: Theorem 1 on pages 213, Goyal et al. [2011℄.)

Example 2.1.5. The In�uene Spread of a Seed Set S using SIMPATH. In

Figure 2.5, the in�uene of a node x on node z an be omputed by enumerating all

simple paths starting from x and ending in z.

Υx,x = 1

Υx,y = 0.3 + 0.4 · 0.5 = 0.5

Υx,z = 0.4 + 0.3 · 0.2 = 0.46

Thus, the spread of a node an be omputed by enumerating simple paths starting

from the node.

σ{x} = Υx,x +Υx,y +Υx,z = 1 + 0.5 + 0.46 = 1.96
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The spread of a seed set S = {x, y}, aroding to therom 2.1.1, is

σ(S) = σV−y(x) + σV−x(y) = 1 + 0.4 + 1 + 0.2 = 2.6

2.1.4 Disovering In�uential Nodes from Soial Trust Network

In [Ahmed and Ezeife 2013℄, the authors state that existing in�uene di�usion models

suh as the Linear Threshold model and the Independent Casade model [Kempe et al.

2003℄ onsider only positive in�uene propagation in a soial network. However, two

opposite relationships (suh as like vs. dislike, love vs. hate, trust vs. distrust, friend

vs. foe, and so on) may oexist in a soial network. For example, users on Wikipedia

an vote for or against the nomination of others to be Wikipedia administrator,

users on Epinions an express trust or distrust of other people's produt reviews

by rating, and partiipants on Slashdot an delare others to be either "friends" or

"foes", users on Youtube an express like or dislike of other people's omments. The

authors laim that we need to onsider both positive in�uene exerted by people

we trust or like and negative in�uene exerted by people we do not trust or dislike

while studying in�uene di�usion proess. Existing di�usion models for In�uene

Maximization are modeled suh that a node's probability of performing an ation

(or adopting a produt) will inrease as the number of his/her friends performing

the same ation inreases. However, the authors argue that, a node's probability of

performing an ation (e.g., buy an iPhobe 4S) should also derease if its distrusted

users, also buy an iPhone 4S.

The authors propose a new di�usion model named Trust-General Threshold (TGT)

model whih inorporates both positive and negative in�uene probabilities based on

trust relationship among users in trust network. In a trust soial network (Figure

2.6 (a)), a node u trusts node v but distrusts node w. In the orresponding in�uene

graph (Figure 2.6 (b)), if node u trusts node v, then node v positively in�uenes node

u with the probability of p+v, u with p−v, u = 0. If node u distrusts node w, then
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node w negatively in�uenes node u with the probability of p+w, u with p+w, u = 0.

u
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+

-

u

v

w

p
+
v, u

p
−
w, u

(a) Trust Graph (b) Influence Graph

Figure 2.6: Trust Graph vs In�uene Graph

The authors de�ne the positive in�uene probability p+v, u = Av,u

Av
where Av

denotes the number of ations performed by node v and Av,u denotes the number

of ations propagated from node v to node u (i.e., the number of v's ations imitated

by node u). For example, the ation log shows that node v (trusted by node u, in

Figure 2.6 (a)) performs 3 ations in total. Among v's 3 ations, 2 ations are imitated

by u. Hene, the probability of node u performing a task after node v performs the

same ation is 2/3 = 0.66, whih is the positive in�uene probability of node v on node

u. Then the authors de�ne the negative in�uene probability p−v, u =
A′

v,u

Av
where Av

denotes the number of ations performed by node v and A′
v,u denotes the number of

ations not propagated from node v to node u (i.e., the number of v's ations not

imitated by node u). For example, the ation log shows node w (distrusted by node

u, in Figure 2.6 (a)) performs 4 ations in total. Among w's 4 ations, only 1 ation

is imitated by node u, the remaining 3 ations are not imitated by node u. That is u

does not perform 3 out of 4 tasks performed by w. Hene, the probability of node u

not performing a task after node w performs the same ation is 3/4 = 0.75, whih is

the negative in�uene probability of node w on node u.

The authors propose an e�etive algorithm named MineSeedLS to disover in�u-

ential nodes from trust network. T-IM takes a soial network graph G(V,E) and a

budget k meaning to �nd at most k in�uential nodes. The algorithm returns a set

of in�uential nodes of size at most k, also known as seed set, S ⊆ V . The algorithm
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starts by initializing seed set S to ∅. Then the algorithm omputes in�uene spread

of eah node v ∈ V . The node with highest in�uene spread is piked and added to

S. MineSeedLS then performs the following loal searh operations: (1) Delete, if by

removing any node v in S inreases the in�uene spread under the T-IM model, then

the node v is removed from S. (2) Add, if by adding any node v in V − S inreases

the in�uene spread under tje T-IM model, then the node v is added to the set S.

(3) Swap, if by swapping any node v in S with any node u in V − S inreases the

spread under T-IM model the node v is removed from S and node u is added to S.

Example 2.1.6. How MineSeedLS Works. We illustrate how MineSeedLS works

through an example. Given a soial network G = (V,E) in Figure 2.7 (where eah

edge is assigned either positive in�uene probability or negative probability and for

the purpose of demonstration, for eah node, the positive threshold is set to 0.3 and

the negative threshold is set to 0.6), and a budget k = 2 meaning we will disover

two in�uential nodes. MineSeedLS will ompute the in�uene spread for eah node.

The in�uene spread of eah node is summarized in Table 2.5. The algorithm piks

the node with maximum spread whih is node u1 yielding an in�uene spread of 3,

and adds u1 to the seed set S. One we have seleted one node in the seed set,

MineSeedLS performs the following loal searh operations, delete, add and swap on

the graph. Sine at this moment there is only one node in the seed set S, the delete

operation is skipped. Sine the budget is 2 > |S| = 1, the algorithm performs the add

operation, i.e., it adds any node in V − S, say u2 to S, and omputes the in�uene

spread of S + {u2}, denoted as σTGT (S + {u2}). Sine σTGT (S + {u2}) = 4 >

σTGT (S) = 3 whih is an improvement, node u2 is added to S. At this moment,

the seed set S = {u1, u2} with the in�uene spread of 4. MineSeedLS ontinues to

hek if swapping (or exhanging) any node in S and any node in V − S yields any

improvement in in�uene spread. It swaps node u2 and node u3 by removing u2 from

and adding u3 to the seed set. Sine σTGT (S − {u2} + {u3}) = 5 > σTGT (S) = 4
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whih is an improvement, node u2 is removed from and node u3 is added to the seed

set S. At this moment, the seed set S = {u1, u3} with the in�uene spread of 5. The

algorithm will repeat the delete-add-swap proedure for any further improvement. It

heks if removing any node from the seed set S improves the in�uene spread or not.

It removes node u1 from S. Sine σTGT (S − {u1}) = 3 < σTGT (S) = 5 whih is not

an improvement, it adds node u1 bak to S. It then tries to remove u3 from S. Sine

σTGT (S − {u3}) = 2 < σTGT (S) = 5 whih is not an improvement, it adds node u3

bak to S. Sine the budget is 2 = |S|, the add operation is skipped. It will further

hek if swapping any node in S with any node in V − S yields any improvement

in spread. Sine no swapping yields any improvement, the algorithm stops at this

point and returns the seed set S = {u1, u3} with the in�uene spread of 5 (This is a

summary from [Ahmed and Ezeife 2013℄ on pages 126).

Figure 2.7: Soial network graph where eah edge is labeled with positive or negative

in�uene probabilities. Soure: Figure 2 on page 126 of [Ahmed and Ezeife 2013℄.

Node v u1 u2 u3 u4 u5
σTGT ({v}) 3 2 2 1 1

Table 2.5: In�uene spread of eah node. Soure: Table 6 on page 126 of [Ahmed

and Ezeife 2013℄.

46



www.manaraa.com

2.1.5 Soial Network Opinion and Posts Mining for Commu-

nity Preferene Disovery

In [Mumu and Ezeife 2014℄, the authors state that the existing in�uene maximization

tehniques suh as CELF [Leskove et al. 2007℄, take as input the whole soial network

in order to �nd in�uential nodes as seed set for a spei� produt (e.g., iPhone) for

viral marketing. Aording to the authors, general in�uene maximization tehniques

like CELF do not onsider multiple posts on multiple produts on Faebook. Also

they ignore the relationships between users. Hene the seed set found by CELF-like

approahes may not be in�uential for that spei� produt (e.g., iPhone). Hene, the

quality of the seed set will be redued and the e�ieny of the algorithm is slow sine

the searh spae is the entire network.

Motivated by the limitation, the authors propose a model named OBIN, whih

takes as input a soial network graph G = (V,E) and a produt z and outputs an

in�uene graph Gz(V,E) for produt z from omputed ommunity preferene where V

is a sub-graph of the entire soial network G ontaining only the relevant nodes to the

query. OBIN model onsists of three main funtions, TPD (Topi-Post Distribution),

PCP-Miner (Post-Comment Polarity Miner), and in�uene network generator. (1)

The �rst funtion named TPD �rst applies SQL queries to �nd all nodes, posts, and

omments in the soial network (i.e., Faebook) for a given produt z, then separates

relevant nodes from irrelevant nodes in the resulting datasets. TPD determines the

relevane of a node u' on a produt (e.g., iPhone) by the number of nodes linked

to node u, the number of likes on u's posts, the number of shares and omments on

u's posts, and if the posts of u ontains the produt information (e.g., iPhone sreen

resolution). (2) The seond funtion named PCP-Miner identi�es opinion omments

among all the omments on u's posts, identi�es sentiment (positive, neutral, negative,

or irrelevant attitude) toward the omments, and measures the polarity sore (θz) of

the posts. The algorithm then uses the polarity sore to rank relevant nodes v, and
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generate a table inluding v's posts w, omments c on posts w, and the set of nodes

who post omments on the posts w of v (whih are onsidered in�uened nodes by

v.) (3) PoPGen (popularity graph generator) uses the list of ranked relevant nodes,

along with their posts, the omments on their posts, the authors of the omments

to ompute the in�uene sore, i.e., the extend to whih the relevant nodes exert on

the in�uened nodes who omment their posts. PoPGen measures the in�uene by

the number of responses. Then PoPGen generates an in�uene graph Gz(V,E) on

produt z where nodes are those relevant nodes and there is an edge between two

nodes if they are friends on Faebook.

Example 2.1.7. How OBIN Works. We illustrate how OBIN model works through

an example. OBIN �rst alls TPD to extrat relevant nodes on a produt z from

Faebook network. It is done by exeuting SQL query

SELECT id, name, ategory, likes, link

FROM searh

WHERE q=iphone AND (type=page OR type = group)

and generating a nodes matrix as shown in Table 2.6. The �rst row of Table 2.6

shows that a node id is "140389060322069", the produt is "iPhone", the node has

3, 116, 728 friends and the pro�le of the node an be viewed via the "iphone.page" link.

One having obtained relevant nodes on a produt z, TPD exeutes SQL query

SELECT post_id, message, likes.ount AS A, share_ount,

reated_time, omments.ount, (omments.ount+share_ount) AS SR

FROM stream

WHERE soure_id = 1 AND message != " "

ORDER BY likes.ount LIMIT 100

in order to generate a set of posts on z of a node, say "140389060322069" as

shown in Table 2.7 and Table 2.8. For example, the �rst row in Table 2.7 shows
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that a post id is "469219579782347" posted by node "140389060322069", the post

title is "Blak or white", there are 61, 153 likes on the post, and the total number of

re-shares and unique omments are 11, 325. The �rst row in Table 2.8 shows that a

post id is "469219579782347", a node "108936862354990" leaves a omment on the

post at time "2013-01-06", the ontent of the omment is "this is really ool".

Node ID V Term A Link

140389060322069 iPhone 3116728 iphone.page

110018862354999 iPhone4 1435239 iPhone-4

214456561919831 iPhone

Fans

261210 theapplelan

Table 2.6: Example of relevant nodes and data for z = iPhone. Soure: Table 1 on

page 141 of [Mumu and Ezeife 2014℄.

POST ID W Term A SR

469219579782347 blak or white 61153 11325

468646856506286 pretty amazing 33899 2213

469758623061776 Apple 5th Avenues 33041 2198

Table 2.7: Example of post data. Soure: Table 2 on page 141 of [Mumu and Ezeife

2014℄.

POST ID W User ID V Time Comment C

469219579782347 108936862354990 2013-01-06 this is really ool

Table 2.8: Example of post data. Soure: Table 3 on page 141 of [Mumu and Ezeife

2014℄.

To determine how in�uential a node v is on a ertain produt z, OBIN alls PCP-

Miner to ompute the polarity sore θz for eah post of node v. For example, Table

2.9 is the popularity matirix for post W "469219579782347". PCP-Miner omputes
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the polarity sore θz for post W "469219579782347" as follows:

θz = (
∑

posrepsonses−
∑

negresponses)× 100%

= 5− 0

= 5

The polarity sore θz is used to obtain a list of relevant nodes V, their posts W,

omments C on posts, and the nodes who leave omments on the posts W and are

therefore onsidered "in�uened by the author of post" as shown in Table 2.10. OBIN

uses post-user relationship (Table 2.10) and user-user relationship Table (2.11) to

generate an in�uene matrix (Table 2.12) suh that the element of the in�uene matrix

is 1 if there exists a relationship in either the post-user relationship or the user-user

relationship, 0 otherwise. OBIN alls PoPGen to generate an in�uene graph based

on in�uene matrix (IMAT) by adding all nodes in the IMAT to the in�uene graph,

and adding an edge between u and v if the the element IMATu,v = 1.

POST ID W User ID V Polarity Time Comment C

469219579782347 108936862354990 positive 2013-01-06 this is really ool

469219579782347 100002395810151 positive 2013-01-06 i want it

469219579782347 100003290108936 positive 2013-01-06 ool

469219579782347 100004582655605 null 2013-01-06 hi sakuntla

469219579782347 1850908608 positive 2013-01-06 wow

469219579782347 100002090841333 positive 2013-01-06 razy aoubt it

469219579782347 100003365201901 null 2013-01-06 admin

Table 2.9: Example of post data. Soure: Table 3 on page 141 of [Mumu and Ezeife

2014℄.

Node ID u Post ID W Node ID v

1 49823667 4

2 11250901 6

Table 2.10: Post-user relationship. Soure: Table 6 on page 143 of [Mumu and Ezeife

2014℄.
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User ID u User ID

3 1

Table 2.11: User-user relationship. Soure: Table 6 on page 143 of [Mumu and Ezeife

2014℄.

1 2 3 4 5 6 7

1 0 0 1 1 0 0 0

2 0 0 0 0 0 1 0

Table 2.12: In�uene Matrix (IMAT). Soure: Table 7 on page 143 of [Mumu and

Ezeife 2014℄.

2.2 Outbreak Detetion

2.2.1 Identifying the In�uential Bloggers in a Community

In [Agarwal et al. 2008℄, the authors �rst onsider the de�nition of an in�uential

blogger as follows:

De�nition 2.2.1. In�uential Blogger. A blogger is onsidered in�uential if s/he

has more than one in�uential blog post.

Then the authors present the de�nition of an in�uential blog post as follows:

De�nition 2.2.2. In�uential Blog Post. A blog post pi is onsidered in�uential if

its in�uene sore I(pi) is greater than an in�uene threshold iIndex(bjk), where the

in�uene threshold is de�ned as: Given a set of U of m bloggers,

More preisely, let {bk|1 ≤ k ≤ m} or {b1, b2, ..., bm} denote a universe set U of m

bloggers, let {pi|1 ≤ i ≤ l} or {p1, p2, ..., pl} denote a set L of all the blog posts by

all m bloggers, let {pj|1 ≤ j ≤ n} or {p1, p2, ..., pn} denote a set N of n blog posts

by a blogger bk. For eah post pj ∈ Nwhere1 ≤ j ≤ n by a blogger bk, there

is an in�uene sore I(pj) assoiated with it. Let max(I(pi)) = max1≤j≤n(I(pj))

denote the maximum in�uene sore among blogger bk's blog posts 1 through n, let

iIndex(bk) denote the in�uene index of blogger bk, then iIndex(bk) = max(I(pi)).
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That is, the in�uene of a blogger is identi�ed by the in�uene of their blogs. Let

V denote the set of top-k bloggers aording to their in�uene index iIndex, let

min(iIndex(bi)) = min1≤i≤k(iIndex(bi)) denote the minimum in�uene index among

k-in�uential bloggers 1 through k, then min(iIndex(bi)) is de�ned as the threshold of

in�uential blog posts. That is, for all the blog posts {p1, p2, ..., pl} by all m bloggers,

blog posts are onsidered in�uential if their in�uene sore I(pj) ≥ min(iIndex(bi))

for 1 ≤ j ≤ l, 1 ≤ i ≤ k. Bloggers are onsidered in�uential if they posted more than

one in�uential blog post.

Aording to the authors, a blog post is onsidered in�uential if (a) it is known

by many people, whih is measured using the number of its inlinks ι, (b) it generates

follow-up ativities, whih is quanti�ed by the number of omments it reeives γ, ()

the ideas in the blog post are original, whih is indiated by the number of its outlinks

θ, (d) the ontent of the blog post has quality, whih is measured by the length of

the blog post λ. To quantify the in�uene of a blog post p I(p), the authors exploit

the four parameters jointly as follows.

InfluenceF low(p) = win

|ι|
∑

m=1

I(pm)− wout

|θ|
∑

n=1

I(pn) (2.5)

where win and wout are the weights that an be used to hange the ratio of inoming

and outgoing in�uene in the model, respetively. pm denotes all the blog posts that

refer to blog post p, for 1 ≤ m ≤ |ι|. pn denotes all the blog posts that blog post p

refers to, for 1 ≤ n ≤ |θ|. Reall that |ι| is the total numbers of inlinks of blog post

p, |θ| is the total numbers of outlinks of blog post p. InfluenceF low(p) measures

the reognition and the novelty simultaneously sine (1) the more in�uential inlinks

p has, the more in�uential p is, (2) the more in�uential outlinks p has, the less novel

p is.

I(p) ∝ wcomγp + InfluenceF low(p) (2.6)
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where wcom is the weight an be exploited to hange the ratio of the number of

omments in the model, γp denotes the number of omments reeived by blog post p.

I(p) is proportional to the joint ontribution by the number of omments it reeives

and InfluenceF low(p) sine (1) the more in�uential omments p reeives, the more

in�uential p is, (2) the larger InfluenceF low(p) is, the more in�uential p is.

I(p) = w(λ)× (wcomγp + InfluenceF low(p)) (2.7)

where w(λ) is a weight funtion to measure the quality of the blog post p aording

to its length λ.

iIndex(B) = max(I(pi)) (2.8)

where iIndex(B) is the in�uene index of blogger B, max(I(pi)) for 1 ≤ i ≤ n is

the maximum in�uene sore among blogger B's blog posts 1 through n. That is,

the in�uene of a blogger B is measured by their blog posts. We an sort bloggers in

desending order aording to their in�uene index, then hoose top k bloggers as k

most in�uential bloggers.

2.3 Probabilisti Models of Information Flow

2.3.1 Learning In�uene Probabilities in Soial Networks

In [Goyal et al. 2010℄, the authors state that real soial networks do not have edge

weights indiating the in�uene probability pv,u with whih v in�uenes u. Therefore,

most of the researhers in this area assume the edge weights indiating the in�uene

probabilities are given as input. In their experiments, researhers adopt primarily

four models of assigning pairwise in�uene probabilities, i.e., the uniform model, the

trivaleny model, the random asade model, and the weighted asade model (setion

1.9). Goyal et al. [2010℄ point out that although the real soial network do not have
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the pairwise in�uene probability pv,u expliitly as the edge weight on (v, u) ∈ E,

the probabilities an be derived from soial network data, i.e., user ation logs. The

problem of learning probabilities in soial networks is de�ned formally as follows:

De�nition 2.3.1. Problem De�nition Given a graph G = (V,E, T ) derived from

a soial network where v ∈ V represents a user, an undireted edge (u, v) ∈ E rep-

resents a soial tie between user u and user v, T : E → N is a funtion mapping

an edge to a timestamp at whih the soial tie is reated, along with an ation log

Actions(User, Action, T ime), whih is a relation ontaining tuples in the form of

(u, a, tu) indiating user u ∈ V performs ation a ∈ A (where A denotes the universe

of ations) at time tu, we want to learn a funtion p : E → [0, 1]× [0, 1] suh that eah

edge (v, u) ∈ E is mapped to two in�uene probabilities pv,u (indiating the probability

with whih v in�uenes u) and pu,v (indiating the probability with whih u in�uenes

v).

Input. The input of the algorithms inludes an undireted soial graph, an ation log,

and an in�uene model. The soial graph onsists of nodes representing individuals,

edges indiating soial ties between these individuals, and edge weights indiating

when the soial tie was reated. For example, in the soial graph shown in Figure

2.8 (a), there are 3 individuals, P, Q, and R, P and Q beome friends at time 4, P

and R beome friends at time 2, Q and R beome friends at time 11. The ation log

onsists of tuples in the form of (user, action, time) indiating user u performs ation

a at time t, and sorted by ation and then by time in inreasing order. For example,

in the ation log shown in Figure 2.8 (b), there are 7 tuples, indiating P performs

ation a1 at time 5, Q performs ation a1 at time 10, and so on. The in�uene model

inludes stati models, ontinuous time models, and disrete time models.

Ation Propagation. We say an ation a propagates from v to u if the soial tie

between u and v was reated before both u and v perform ation a, and v performs

ation a before u performs ation a. For example, in Figure 2.8 (a), Q and R beome

54



www.manaraa.com

User Action Time

P

Q

R

Q

R

R

P

a1

a1

a1

a2

a2

a3

a3

5

10

15

12

14

6

14

P

Q R

4 2

11

Influence Models

P Q R

P

Q

R

0.5 0.5

0.50

0.33 0

(f) Influence Matirx

(a) Social Graph

(b) Action Log

P

Q R

(c) Propagation Graph of a1

(d) Propagation Graph of a2

Q R

(e) Propagation Graph of a3

P R
5 10

2 8

Figure 2.8: A framework proposed by Goyal et al. for learning in�uene probabilities

for all edges. Soure: Figure 2 on Page 6, Goyal et al. [2010℄.
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friends at time 11, Q performs ation a2 at time 12, and R performs ation a2 at

time 14, therefore we say ation a2 propagates from Q to R. On the other hand, Q

and R beome friends at time 11, Q performs ation a1 at 10, and R performs ation

a1 at 15, however Q performs ation a1 at 10 whih is earlier than Q and R beome

friends, hene we say ation a1 does not propagate from Q to R.

Propagation Graph. For eah ation a ∈ A, we have a propagation graph for it.

A propagation graph for an ation a is a weighted, direted graph G(V,E), where a

node v ∈ V represents a user, a direted edge (v, u) ∈ E from v to u indiating the

propagation of the ation a from v to u, the edge weight represents the time delay

between v performing the ation a and u performing the same ation a. If we denote

the time that u performs ation a as tu(a), then the time delay on the edge is denoted

as tu(a) − tv(a). For example, Figure 2.8 () is the propagation graph for ation a1,

the edge (P,Q) says P propagates a1 to Q. Aording to the ation log (shown in

Figure 2.8 (b)), tP (a1) = 5, tQ(a1) = 10, hene the time delay on the edge (P,Q) is

tQ(a1)− tP (a1) = 5.

Output. The output is an in�uene matrix M (shown in Figure 2.8 (f)) where

M [v, u] = pv,u, whih is the pairwise in�uene probability of v on u. That is, we have

learned pv,u for all edges.

The authors �rst introdue their solution framework whih is an instane of the

General Threshold Model. Reall from setion 1.5, the General Threshold Model

represents a soial network as a weighted, direted graph G = (V,E). Eah node

v ∈ V is assoiated with a threshold funtion fv(S), where S is the set of v's ative

neighbors. fv(S) measures the joint in�uene probability of v's ative neighbors S

exerted on v, with fv(∅) = 0. Eah node v ∈ V hooses uniformly at random a

threshold θv over the interval [0,1℄. The di�usion proess happens in disrete steps,

i.e., t = 0, 1, 2, ..., n− 1. At any time t, eah node v ∈ V is either ative or inative.

One v is ativated, it remains ative and annot swith bak to inative. At time
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0, there is an initial set S0 that adopts a new behavior. At time t > 0, all nodes

that were ative at time t − 1 remain ative, furthermore, among all the inative

nodes, any node v is ativated if fv(S) ≥ θv. The proess will stop when no more

ativations are possible. Goyal et al. [2010℄ assume that the in�uene that eah of

the ative neighbors of an inative node u exerts on u is independent of eah other

and de�ne the threshold funtion (also known as the joint in�uene probability of u's

ative neighbors exerted on u) as follows,

pu(S) = 1−
∏

v∈S

(1− p(v,u)) (2.9)

where u is an inative user, S is the set of its ativated neighbors, pu(S) is the joint

in�uene probability of S exerted on u (also known as the threshold funtion of u),

and pv,u is the pairwise in�uene probability of v ∈ S exerted on u. If pu(S) ≥ θu,

where θu is the ativation threshold of user u, then u is ativated.

The authors then show how to estimate the pairwise in�uene probability p(v,u)

in equation 2.9 in stati models, ontinuous time models, and disrete time models

respetively. We will introdue the stati models on whih our proposed algorithm

omputeIn�ueneProb based (Algorithm 3 in Chapter 3). Continuous time models,

and disrete time models are omitted for lak of spae.

Stati Model. Stati models assume that the in�uene probabilities are stati and do

not hange as time goes on. Three instanes of stati models are presented: Bernoulli

distribution, Jaard index, and partial redits.

Stati Model - Bernoulli Distribution. Bernoulli distribution estimates the in-

�uene probability of v on u, pv,u using Maximum-Likehood Estimator (MLE) as

follows:

pv,u =
Av2u

Av

(2.10)

where Av2u denotes the number of ations propagated from v to u, Av denotes the
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number of ations performed by v.

Example 2.3.1. In Figure 2.8, the pairwise in�uene probability pP,Q under stati

model estimated by Bernoulli distribution is

pP,Q =
AP2Q

AP

=
1

2

= 0.5

AP2Q = 1 beause aording to the propagation graphs (shown in Figure 2.8 (), (d),

and (e)), there is only 1 ation (i.e., a1) propagated from P to Q. AP = 2 beause P

performs 2 ations a1 and a3.

Stati Model - Jaard Index. Jaard index estimates the in�uene probability

of v on u pv,u by adopting Jaard similarity (The Jaard similarity of two sets S and

T is de�ned as |S ∩ T |/|S ∪ T |, i.e., the ratio of the ardinality of the intersetion of

S and T to the ardinality of the union of S and T [Leskove et al. 2011℄) as follows:

pv,u =
Av2u

Au|v

(2.11)

where Av2u denotes the number of ations propagated from v to u, Au|v denotes the

number of ations either performed by u or performed by v.

Example 2.3.2. In Figure 2.8, the pairwise in�uene probability pP,Q under stati

model estimated by Jaard index is

pP,Q =
AP2Q

AP |Q

=
1

3

= 0.33
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AP2Q = 1 beause aording to the propagation graphs (shown in Figure 2.8 (), (d),

and (e)), there is only 1 ation (i.e., a1) propagated from P to Q. AP |Q = 3 beause

P performs 2 ations a1 and a3, Q performs 3 ations a1, a2, and a3. {a1, a3} ∪

{a1, a2, a3} = {a1, a2, a3}, and | {a1, a2, a3} | = 3.

Stati Model - Partial Credits. Partial redits �rst estimates the redit given

to eah ativated neighbors v ∈ S of u who performed an ation a ∈ A before u as

follows:

creditv,u(a) =
1

∑

w∈S I(tw(a) < tu(a))
(2.12)

where tu(a) denotes the time at whih user u performs an ation a ∈ A, tw(a) denotes

the time at whih user w performs the ation a ∈ A, S denotes the set of ativated

neighbors of u, I is an indiator funtion returning 1 if an ativated neighbor w ∈ S

performs ation a ∈ A before u, returning 0 otherwise.

∑

w∈S I(tw(a) < tu(a)) in

equation 2.4 means the number of ative neighbors of u who perform the ation a

before user u. That is, in the partial redits model if u is in�uened to adopt an

ation a, eah of u's ative neighbors who have performed the ation a before u does

so is given an equal redit 1/d for the ation a, where d is the number of ative

neighbors of u who perform the ation a before user u does so, or d is the number of

ontributors who propagate the ation a to u.

Then the Bernoulli model with partial redit estimates the pairwise in�uene

probability of v on u, pv,u by plugging equation 2.4 into equation 2.2 as follows:

pv,u =

∑

a∈A creditv,u(a)

Av

(2.13)

where

∑

a∈A creditv,u(a) is the total redits given to v for propagating ations to u,

and Av denotes the number of ations performed by v.

Example 2.3.3. In Figure 2.8, the pairwise in�uene probability pP,Q under stati
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model estimated by partial redit Bernoulli distribution is

pP,Q =

∑

a∈A creditP,Q(a)

AP

=
creditP,Q(a1)

AP

=
1
1

2

= 0.5

∑

a∈A creditP,Q(a) = 1 beause aording to the propagation graphs (shown in Figure

2.8 (), (d), and (e)), there is only 1 ation (i.e., a1) propagated from P to Q and P

is the only ontributor propagating ation a1 to Q, hene user P gets the full redit for

in�uening user Q for performing ation a1. AP = 2 beause P performs 2 ations

a1 and a3.

And Jaard index model with partial redit estimates the pairwise in�uene prob-

ability of v on u, pv,u by plugging equation 2.4 into equation 2.3 as follows:

pv,u =

∑

a∈A creditv,u(a)

Au|v

(2.14)

Example 2.3.4. In Figure 2.8, the pairwise in�uene probability pP,Q under stati

model estimated by partial redit Jaard index is

pP,Q =

∑

a∈A creditP,Q(a)

AP |Q

=
creditP,Q(a1)

AP |Q

=
1
1

3

=
1

3

= 0.33
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∑

a∈A creditP,Q(a) = 1 beause there is 1 ation (a1) propagated from P to Q and

P is the only ontributor propagating ation a1 to Q, user P gets the full redit for

in�uening user Q for performing ation a1. AP |Q = 3 beause P performs 2 ations

a1 and a3, Q performs 3 ations a1, a2, and a3. {a1, a3} ∪ {a1, a2, a3} = {a1, a2, a3},

and | {a1, a2, a3} | = 3.
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Chapter 3

Proposed Algorithm for Mining

In�uential Nodes From Competitive

Soial Networks

The setting of the thesis problem is the launh of tehnology A into a market where a

ompeting tehnology B already exists along with a set of early adopters of tehnology

B. The problem we takle is to �nd k most in�uential nodes and onvine them to

adopt Tehnology A (e.g., giving eah a free sample of Tehnology A) suh that the

�nal adoptions of Tehnology A in the rowd is maximized in the setting. Here, k

is our budget for the advertising ampaign meaning we have at most k free samples

to distribute. If we represent the underlying soial network (the medium for the

propagations of two tehnologies) as G = (V,E), where V represents individuals, E

represents interations between them, then there are two aspets related to the thesis

problem. The �rst aspet of our problem is to study how the dynamis of adoptions

of Tehnology A and Tehnology B simultaneously spread out through the network,

i.e., we need a di�usion model to desribe the two simultaneous in�uene di�usions

and their resulting asading behaviors (setion 3.1), inluding the task of learning
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the pairwise in�uene probabilities as the edge weights (setion 3.2.2). The seond

aspet of our problem is to study an e�ient yet e�etive algorithm whih allows us to

�nd the speial k nodes for Tehnology A under the proposed di�usion model (setion

3.2.4). We inlude analysis of the running times of all our algorithms in setion 3.3.

3.1 Competing General Threshold Model

In this setion, we will address the �rst aspet of the thesis problem, i.e., the proposed

Competing General Threshold model whih is an extension to the General Threshold

model [Kempe et al. 2003℄. Unlike the original General Threshold model whih

models one single in�uene di�usion in the network, the proposed Competing General

Threshold (CGT) model is aiming to model two interfering in�uene di�usions in the

network.

But before we do that, we will brie�y review some terminology used in existing

in�uene maximization researh. In the next setion, we will extend the de�nitions of

them to our thesis problem setting. In the following de�nitions, the underlying soial

network is represented by G = (V,E), where V represents individuals, E represents

interations between them, and |V | = n (i.e., the ardinality of V is n).

De�nition 3.1.1. Pairwise In�uene Probability, denoted as pv,u, is the weight

on edge (v, u) ∈ E indiating the extent to whih node v in�uenes node u. That is,

if v is ative, it sueeds in ativating u with the probability of pv,u.

De�nition 3.1.2. Threshold Funtion, also known as joint in�uene probability

or ativation funtion, de�ned as fv : 2V → [0, 1], where 2V denotes the power set

of V . Under the threshold model, eah node v ∈ V is assoiated with a threshold

funtion fv(·), fv(S) measures the joint in�uene of v's ative neighbors S exerted on

v, with fv(∅) = 0.
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De�nition 3.1.3. Threshold, or ativation threshold, denoted as θv, is hosen uni-

formly at random over the interval [0,1℄ for eah node v ∈ V under the threshold

di�usion model. Here, "uniformly" means the probability of hoosing any point over

[0,1℄ is the same, or eah point is being equally likely to be hosen. Intuitively, it

indiates enough (or the minimum number) of its neighbors who have already adopted

a behavior in order for v to do so. θv being hosen uniformly at random for eah

v ∈ V is intended to model our lak of knowledge of the exat values [Kempe et al.

2003℄.

Competing In�uene Di�usions. In this thesis, we onsider the setting in whih

there are two ompeting tehnologies, e.g., Apple iPhone (A) vs. Blakberry (B)

oexisting in the network. When there are two ompeting tehnologies, A and B o-

existing in the network, there are two seed sets, the seed set that adopts innovation A,

i.e., the early adopters of innovation A (denoted as SA
0 ), and the seed set that adopts

innovation B, i.e., the early adopters of innovation B (denoted as SB
0 ). Competing

in�uene di�usions refer to a senario where the adoptions of two innovations prop-

agate simultaneously throughout the network from eah seed set to the rowd suh

that one di�usion (the propagation of one tehnology from its seed set to the rowd)

interposes in a way that hinders or impedes the other di�usion (the propagation of

the other tehnology from its seed set to the rowd).

Competing In�uene Di�usions Model is the model used to desribe the om-

peting in�uene di�usions. In this thesis, we extend the existing General Threshold

model whih deals with a single in�uene di�usion (the propagation of a single teh-

nology) in the network (setion 1.5) to the Competing General Threshold model whih

deals with two ompeting in�uene di�usions (two tehnologies propagating and om-

peting with eah other).
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The Soial Network under the CGT Model. The CGT model represents a

soial network as a weighted, direted graph G = (V,E). Eah node u ∈ V is as-

soiated with two threshold funtions fA
u (·) and fB

u (·). Let NA
denote u's ative

neighbors who adopt tehnology A, then fA
u (N

A) measures the joint A-in�uene of

u's ative neighbors who adopt tehnology A exerted on u, with fA
u (∅) = 0. Let

NB
denote u's ative neighbors who adopt tehnology B, then fB

u (NB) measures the

joint B-in�uene of u's ative neighbors who adopt tehnology B exerted on u, with

fB
u (∅) = 0. Eah node u ∈ V hooses uniformly at random over the interval [0,1℄ two

thresholds, θAu (indiates the minimum number of its A-neighbors who have already

adopted tehnology A in order for u to do so) and θBu (indiates the minimum num-

ber of its B-neighbors who have already adopted tehnology B in order for u to do

so). That eah node u ∈ V hooses uniformly at random over the interval [0,1℄ two

thresholds, is the random aspet of the CGT model.

The In�uene Di�usions under the CGT Model. The in�uene di�usions

happen in disrete steps, i.e., t = 0, 1, 2, ..., n − 1. At any time t, eah node v ∈

V has one of the four states, A indiating adopting tehnology A or A-ative, B

indiating adopting tehnology B or B-ative, AB indiating adopting tehnology A

and tehnology B simultaneously or AB-ative, and 0 indiating adopting neither of

them or inative. (We all A-ative nodes A-nodes, B-ative nodes B-nodes, and

AB-ative nodes AB-nodes in the rest of this thesis.) One a node beomes ative

(A-ative, B-ative, or AB-ative), it annot hange its state anymore, i.e., it annot

hange bak to inative or swith to another ative state. This is the ompetitive

aspet of the two in�uene difussions. This is beause one a node v beomes, say

A-ative, it annot swith to B, whih means it bloks the in�uene propagation of

tehnology B [Chen et al. 2013℄. At time 0, there are two seed sets, SA
0 that adopts

tehnology A and SB
0 that adopts tehnology B, and SA

0 ∩ SB
0 = ∅. At time t > 0,
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all nodes that were ative at time t − 1 remain ative, for eah inative node u, let

NA
denote the set of u's ative neighbors who adopt tehnology A, NB

the set of u's

ative neighbors who adopt tehnology B, then the state (whether A, B, AB, or 0) of

node u is de�ned as follows:

De�nition 3.1.4. The Ative State of AB. If fA
u (N

A) ≥ θAu and fB
u (NB) ≥ θBu ,

then u's state beomes AB meaning ative in both A and B.

De�nition 3.1.5. The Ative State of A. If fA
u (N

A) ≥ θAu and fB
u (NB) < θBu ,

then u's state beomes A meaning ative in A but inative in B.

De�nition 3.1.6. The Ative State of B. If fA
u (N

A) < θAu and fB
u (NB) ≥ θBu ,

then u's state beomes B meaning ative in B but inative in A.

De�nition 3.1.7. The Ative State of Inative. If fA
u (N

A) < θAu and fB
u (NB) <

θBu , then u's state beomes 0 meaning inative in both A and B.

The proess will stop before or at time n− 1 (where n is the number of nodes in

V ) when no more ativations are possible.

We will illustrate how two ompeting in�uene di�usions propagate under the

Competing General Threshold model through an example. But before we do that,

we need to de�ne the pairwise in�uene probabilities pAv,u and pBv,u for eah edge

(v, u) ∈ E under the CGT model and the threshold funtions fA
u (·) and fB

u (·) for

eah node u ∈ V under the CGT model respetively below.

Pairwise In�uene Probabilities under the CGT Model. In the soial network

G = (V,E) under the Competing General Threshold (CGT) model, eah edge (v, u) ∈

E is assigned two pairwise in�uene probabilities, pAv,u and pBv,u. pAv,u indiates the

extent to whih node v in�uenes node u for tehnology A. That is, if v is A-ative

or AB-ative, it sueeds in ativating u to adopt tehnology A with the probability

of pAv,u. p
B
v,u indiates the extent to whih node v in�uenes node u for tehnology B.

That is, if v is B-ative or AB-ative, it sueeds in ativating u to adopt tehnology B
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with the probability of pBv,u. In this thesis, we assume that a Twitter user v's in�uene

on another Twitter user u holds aross di�erent ations, i.e.,

pv,u = pAv,u = pBv,u (3.1)

That is, we assume the in�uene probability is person-based, not produt-based.

If we want the in�uene probability to be produt-based, we an assign di�erent

weights (whih an be learned from past ation logs) to pv,u to vary pAv,u and pBv,u. We

learn the pairwise in�uene probabilities pv,u from Twitter datasets (setion 3.2.2) to

obtain pAv,u and pBv,u. Having obtained the pairwise in�uene probabilities pAv,u and

pBv,u, we ompute the joint in�uene probabilities f
A
u (·) (for u's ative A-neighbors to

jointly a�et u to adopt tehnology A) and fB
u (·) (for u's ative B-neighbors to jointly

a�et u to adopt tehnology B). The joint in�uene probabilities fA
u (·) and fB

u (·) are

also known as u's threshold funtions (explained next).

Threshold Funtions under the CGT Model. In the soial network G = (V,E)

under the Competing General Threshold (CGT) model, eah node u ∈ V is assoiated

with two threshold funtions fA
u (·) and fB

u (·). Let NA
denote u's ative neighbors

who adopt tehnology A (inluding those who adopt both A and B), then fA
u (N

A)

measures the joint A-in�uene of u's ative neighbors who adopt tehnology A exerted

on u, with fA
u (∅) = 0. Let NB

denote u's ative neighbors who adopt tehnology

B (inluding those who adopt both B and A), then fB
u (NB) measures the joint B-

in�uene of u's ative neighbors who adopt tehnology B exerted on u, with fB
u (∅) = 0.

We adopt the threshold funtion proposed in [Goyal et al. 2010℄ for the General

Threshold model, and de�ne the threshold funtions fA
u (·) and fB

u (·) under the CGT

model as follows:
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fA
u (N

A) = 1−
∏

v∈NA

(1− pAv,u) (3.2)

where u is an inative node, NA
is the set of its ative neighbors for tehnology A,

fA
u (N

A) is the threshold funtion that measures the joint A-in�uene probability of

NA
exerted on u, and pAv,u is the pairwise A-in�uene probability of v ∈ NA

exerted

on u.

fB
u (NB) = 1−

∏

v∈NB

(1− pBv,u) (3.3)

where u is an inative node, NB
is the set of its ative neighbors for tehnology B,

fB
u (NB) is the threshold funtion that measures the joint B-in�uene probability of

NB
exerted on u, and pBv,u is the pairwise B-in�uene probability of v ∈ NB

exerted

on u.

Example 3.1.1. Threshold Funtions Evaluation. Let us illustrate how to eval-

uate the threshold funtions fA
u (N

A) (equation 3.2) and fB
u (NB) (equation 3.3) for

node u through an example. In the soial network shown in Figure 3.1, there are 5

nodes. Of whih, nodes x, y, z, v are ative nodes and node u is inative. The state

of node x is AB, the state of node y is A, the state of node z is B, the state of

v is B, and the state of u is 0 meaning inative. Node u has two ative neighbors

who adopt tehnology A, i.e., the set of u's ative A-neighbors NA = {x, y}, and

three ative neighbors who adopt tehnology B, i.e., the set of u's ative B-neighbors

NB = {x, z, v}. Also node u hooses uniformly at random two thresholds θAu = 0.5

and θBu = 0.8 over the interval [0,1℄. Here, we assume that pv,u = pAv,u = pBv,u.

The threshold funtion fA
u (N

A) whih measures the joint in�uene probability of NA
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u

x

y

z

v

A,B

A

B

B

θA
u
= 0.5 θB

u
= 0.8

p
A
x,u = 0.5

p
B
x,u = 0.5

p
A
z,u = 0.3

p
B
z,u = 0.3

p
A
y,u = 0.6

p
B
y,u = 0.6

p
A
v,u = 0.4

p
B
v,u = 0.4

Figure 3.1: An inative node u in the Competing General Threshold Model where

the state of node x is AB, the state of node y is A, the state of node z is B, and the

state of v is B.

on u is omputed as follows

fA
u (N

A) = fA
u ({x, y})

= 1−
∏

v∈{x,y}

(1− pAv,u)

= 1− (1− pAx,u)(1− pAy,u)

= 1− (1− 0.5)(̇1− 0.6)

= 0.8

The threshold funtion fB
u (BA) whih measures the joint in�uene probability of NB

on u is omputed as follows

fB
u (NB) = fB

u ({x, z, v})

= 1−
∏

v∈{x,z,v}

(1− pBv,u)

= 1− (1− pBx,u)(1− pBz,u)(1− pBv,u)

= 1− (1− 0.5)(̇1− 0.3)(̇1− 0.4)

= 0.79

Sine fA
u (N

A) = 0.8 > θAu = 0.5 and fB
u (NB) = 0.79 < θBu = 0.8, then u′s state

beomes A based on De�nition 3.1.5.
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Having de�ned the pairwise in�uene probabilities pAv,u and pBv,u for eah edge

(v, u) ∈ E under the CGT model and the threshold funtions fA
u (·) and fB

u (·) for

eah node u ∈ V under the CGT model, we now use Figure 3.2 to illustrate how the

CGT model works.

Example 3.1.2. Two Competing In�uene Di�usions under the CGT Model.

At time 0 (Figure 3.2 (a)), there is a soial network G = (V,E) (where eah node is

assoiated with two thresholds θa and θb, eah edge is assoiated with two in�uene

probabilities pa and pb), along with two seed sets, i.e., SA
0 = {5} and SB

0 = {1}. At

time 1, node 1 ativates node 2 sine fB
2 = 1 − (1 − pB1,2) = pB1,2 = 0.5 > θB2 = 0.3,

node 5 ativates node 2 sine fA
2 = 1 − (1 − pA5,2) = pA5,2 = 0.4 = θA2 = 0.4, the

state of node 2 beomes AB based on De�nition 3.1.4 (Figure 3.2 (b)). At time

2, nodes 2 and 5 jointly ativate node 3 sine fA
3 = 1 − (1 − pA2,3)(1 − pA5,3) =

1 − (1 − 0.3)(1 − 0.3) = 0.51 > θA3 = 0.5, the state of node 3 beomes A (Figure

3.2 ()) based on De�nition 3.1.5. At time 3, nodes 3 and 5 try to jointly ativate

node 4, but fA
4 = 1− (1− pA3,4)(1− pA5,4) = 1− (1− 0.5)(1− 0.2) = 0.6 < θA4 = 0.7, the

state of node 4 beomes 0 (Figure 3.2 ()) based on De�nition 3.1.7. At this point,

the di�usion stops sine no more ativations are possible.

1

2

3

4

5

pA
1,2 = 1

pB
1,2 = 1

pA
2,3 = 0.4

pB
2,3 = 0.4

pA
4,3 = 0.6

pB
4,3 = 0.6

pA
5,4 = 1

pB
5,4 = 1

θAv = θBv = 0.4 for all v

1

2

3

4

5

t=0 t=1

1

2 4

5

t=2

3

(a) (b) (c)

Figure 3.2: Example of Two Competing In�uene Di�usions under the CGT Model

In�uene Spread under the CGT Model. Let SA
0 be the seed set for tehnology

A, SB
0 the seed set for tehnology B. The in�uene spread for tehnology A of two
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seed sets SA
0 and SB

0 under the CGT model, denoted as σA(SA
0 , S

B
0 ), is de�ned as

the expeted number of A-nodes at the end of the di�usion proess. The in�uene

spread σA(·) under the CGT model is monotone and non-submodular with respet to

tehnology A.

Statement 3.1.8. For an arbitrary instane of the Competing General Threshold

model, the resulting in�uene funtion σA(·) is monotone with respet to tehnology

A.

Statement 3.1.9. For an arbitrary instane of the Competing General Threshold

model, the resulting in�uene funtion σA(·) is non-submodular with respet to teh-

nology A.

We give a ounter example [Chen et al. 2013℄ to show CGT is non-submodular.

From Figure 3.3 (a), we an see σA({1} ∪ ∅, {6})− σA(∅, {6}) = 3. From Figure 3.3

(b), we an see

σA({1} ∪ {5} , {6}) − σA({5} , {6}) = 4, whih means the marginal gain of adding

node 1 to ∅ ∪ {6} (a small ontext) is smaller than the marginal gain of adding node

1 to {5} ∪ {6} (a large ontext).
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(b)

pA
1,2 = 1

pB
1,2 = 1

pA
2,3 = 1

pB
2,3 = 1

pA
3,4 = 0.4

pB
3,4 = 0.4

pA
5,4 = 0.6

pB
5,4 = 0.6

pA
6,5 = 1

pB
6,5 = 1

θAv = θBv = 0.7 for all v θAv = θBv = 0.7 for all v

Figure 3.3: Counter example to show CGT is non-submodular

The CGT model is based on the separated-threshold model proposed by Ahmed

and Ezeife [2013℄ where the di�usion proess under the trust model is non-monotone
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but submodular. It also bears resemblane to the separated-threshold model pro-

posed by the Borodin et al. [2010℄ where the di�usion proess is monotone but not

submodular.

Thesis Problem De�nition 3.1.10. Let SA
0 be the seed set for tehnology A, SB

0

the seed set for tehnology B. The in�uene spread for tehnology A of two seed sets

SA
0 and SB

0 under the CGT model, denoted as σA(SA
0 , S

B
0 ), is de�ned as the expeted

number of A-nodes at the end of the di�usion proess.

Given a direted soial network G = (V,E), a non-negative budget k, a seed set of B-

nodes SB
0 , and CGT model, the problem of �nding in�uential A-seeds when tehnology

B already exists in the network is to �nd a seed set SA
0 as early adopters of tehnology

A of size at most k suh that σA(SA
0 , S

B
0 ) is maximum.

3.2 The Main CIAM System and Algorithm

The solution framework named Competing In�uential A-Nodes Miner (CIAM), whih

is an instane of the General Competing Threshold model, is aiming to �nd the

in�uential A-nodes from a soial network where B-nodes already exist. The input of

the overall framework is as follows:

1. Twitter Datasets - onsists of 5 Twitter networks as follows,

1.1 Twitter follow network - ontains a list of edges in the form of (u, v) indi-

ating node u follows node v (e.g., Table 3.1).

1.2 Twitter mention network - ontains a list of tuples in the form of (u,v,w)

indiating node u mentions node v w times (e.g., Table 3.2)

1.3 Twitter reply network - ontains a list of tuples in the form of (u,v,w)

indiating node u replies node v w times (e.g., Table 3.3)
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u v

1 4

1 5

2 1

3 2

4 3

4 5

5 6

Table 3.1: Twitter follow network

u v w

2 1 30

3 2 30

4 3 10

Table 3.2: Twitter mention network

u v w

2 1 30

3 2 30

1 4 30

1 5 15

5 6 60

Table 3.3: Twitter reply network

u v w

2 1 10

3 2 10

1 5 15

4 5 10

Table 3.4: Twitter retweet network

v t

1 100

2 100

3 100

4 100

5 100

6 100

Table 3.5: Twitter tweets network

1.4 Twitter retweet network - ontains a list of tuples in the form of (u,v,w)

indiating node u retweets node v w times (e.g., Table 3.4)

1.5 Twitter tweets network - ontains a list of tuples in the form of (u,t) indi-

ating node u posts t tweets (e.g., Table 3.5)

2. B-seeds (denoted as SB
0 ) - a list of m B-nodes in the form of [u1,u2,...,um℄, where

ui is the node id, (e.g., [26339, 191214, ..., 503050℄).

3. Budget k - an integer indiating the ardinality of seed set of A-nodes

The four main omponents of this system and omplete �ow in the CIAM frame-

work are shown in Figure 3.4.

73



www.manaraa.com

Generate Influence Graph 

Compute Influence Prob. 
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Influence Prob . Table 

Augmented Influence 
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Figure 3.4: CIAM Framework
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The four main steps involved in the CIAM are presented below, before the formal

presentation of the algorithm.

Step 1. (line 1 of CIAM (Algorithm 1)) CIAM alls onvertFollowToInf (Al-

gorithm 2) to onstrut an in�uene graph G = (V,E) from Twitter follow network,

as done by existing algorithms [Kempe et al. 2003℄ and [Ahmed and Ezeife 2013℄.

Initially, the in�uene graph G = (V,E) is empty. For eah tuple (u, v) in the Twit-

ter follow network, onvertFollowToInf adds nodes u and v to the in�uene graph

G = (V,E) if nodes u and v have not been added to the graph yet, and adds a direted

edge from v to u. Details of step 1 are presented in Setion 3.2.1.

Step 2. (line 2 of CIAM (Algorithm 1)) CIAM uses Maximum-Likelihood Estima-

tion [Fisher 1922℄ to onstrut the formula of the pairwise in�uene probabilities un-

der multinomial distribution. CIAM alls omputeIn�ueneProb (Algorithm 3)

whih uses relational algebra operators left-join and projetion on 5 Twitter datasets

(i.e., Twitter follow network, Twitter mention network, Twitter reply network, Twit-

ter retweet network, and Twitter tweets network) to retrieve the values of parameters

in the pairwise in�uene probabilities formula and plug the values into the formula

in order to ompute the pairwise in�uene probabilities pv,u for eah edge (v, u) in

the in�uene graph whih is generated from Step 1. Details of step 2 are presented

in Setion 3.2.2.

Step 3. (line 3 of CIAM (Algorithm 1)) CIAM alls augmentG (Algorithm 4)

to augment the in�uene graph G = (V,E) (generated from Step 1) as follows. For

eah edge (v, u) ∈ E, augmentG looks up the in�uene probability table to �nd the

pairwise in�uene probability pv,u. It assigns the edge (v, u) two pairwise in�uene

probabilities, pAv,u = pv,u (the probability that v in�uenes u to adopt tehnology

A) and pBv,u = pv,u (the probability that v in�uenes u to adopt tehnology B). It

stops when all the edges (v, u) ∈ E have been visited. When it stops, it outputs

the augmented in�uene graph G = (V,E, P ) where V represents Twitter users, E
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represents the in�uene interations between Twitter users, P represents the pairwise

in�uene probabilities between two Twitter users (Figure 3.6), as done by [Kempe et

al. 2003℄ and [Ahmed and Ezeife 2013℄. Details of step 3 are presented in Setion

3.2.3.

Step 4. (line 4 of CIAM (Algorithm 1)) CIAM alls gtMineA (Algorithm 6)

to �nds the k most in�uential A-nodes in a network where there exists a seed set

of B-nodes. gtMineA onsists of two phases. The �rst phase exploits the greedy

algorithm [Kempe et al. 2003℄ suh that for eah node v that is not in the two seed

sets (i.e., SA
0 and SB

0 ), the algorithm omputes the marginal gain of adding v to

SA
0 and SB

0 , piks the node whih yields the maximum marginal gain, and repeats

this proess k times to �nd k A-seeds. The seond phase exploits the loal searh

algorithm [Ahmed and Ezeife, 2013℄ suh that if swapping any A-seed in SA
0 (found

in the �rst phase) and any node not in the two seed sets (i.e., SA
0 and SB

0 ) yields more

A-nodes at the end of the di�usion, the algorithm will swap them. The algorithm

will repeat the swapping operation until no more improvements are possible. Details

of Step 4 are presented in Setion 3.2.4.

The formal algorithm for the CIAM framework is shown in Algorithm 1.

3.2.1 Crawling Soial Networks to Construt the Soial Graph

The algorithm onvertFollowToInf (Algorithm 2) presented in this setion is the

�rst step of our proposed framework CIAM. The input of the algorithm is Twitter

follow network (Table 3.1). The Twitter follow network onsists of tuples in the form

of (u, v) meaning u follows v. Initially, the in�uene graph G = (V,E) (where V is

the nodes and E is the in�uene relationships between nodes) is set to ∅ (line 1). For

eah tuple (u, v) in the Twitter follow network, onvertFollowToInf adds nodes u

and v to the in�uene graph G if they have not been added to the G (line 2.1), then it

adds a direted edge from nodes v to u (lines 2.2). After all the tuples are proessed,
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Algorithm 1 CIAM(TwitterData,SB
0 ,k) - The main algorithm for �nding k in�uential

A-nodes in soial network with existing B-nodes

Input: Twitter networks, B-seeds, budget k
Output: A-seeds of size at most k
1: onvert Twitter follow network (e.g., Table 3.1) to an in�uene graph G = (V,E)

(e.g., Figure 3.5) where V represents Twitter users and E represents in�uene

relationships between them using algorithm onvertFollowToInf (presented in

Algorithm 2)

2: learn pairwise in�uene probabilities from Twitter networks and output an in�u-

ene probability table (e.g., Table 3.10) using algorithm omputeIn�ueneProb

(presented in Algorithm 3)

3: look for the in�uene probability table (e.g., Table 3.10), augment the in�uene

graph G = (V,E) by assigning the pairwise in�uene probabilities to eah edge

(v, u) ∈ E, and output an augmented graph G = (V,E, P ) (e.g. Figure 3.6) where
V represents Twitter users, E represents in�uene relationships between them,

and P represents the in�uene probabilities as the edge weights using algorithm

augmentG (presented in Algorithm 4)

4: �nd A-seeds in the augmented graph G = (V,E, P ) using algorithm gtMineA

(presented in Algorithm 6)

it outputs an in�uene graph G = (V,E) (Figure 3.5), as done by existing algorithms

proposed in [Kempe et al. 2003℄ and [Ahmed and Ezeife 2013℄.

Algorithm 2 onvertFollowToInf(Twitter Follow Network) - Construt an in�uene

graph from Twitter follow network

Input: Twitter follow network with tuple (u,v) meaning u follows v

Output: an in�uene graph G = (V,E)

1. Set G to ∅

2. For eah tuple (u, v) in Twitter follow network

2.1 add nodes u and v to the in�uene graph G

2.2 add a direted edge (v, u) to the in�uene graph G

3. return G
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1

2

3

4

5

6

Figure 3.5: In�uene Graph

3.2.2 Learning In�uene Probabilities as Edge Weights from

Twitter

The underlying soial network we use to study in�uene maximization in the CGT

model is Twitter network. Twitter uses retweet, reply and mention to say I like your

tweets. Twitter's retweet measures how far an original tweet propagates throughout

the network. Users who have a higher number of retweeted tweets an be onsidered

more in�uential than users who have a few number of retweeted tweets [Russell 2013℄.

Twitter's reply measures how muh your tweets make me feel engaged suh that I want

to talk something bak to you [Wu et al. 2011℄. Users who have a higher number of

replied tweets an be onsidered more in�uential than users who have a few number

of replied tweets. Twitter's mention measures the name value of the mentioned user

[Cha et al. 2010℄. Users who are mentioned more frequently in other users' tweets

an be onsidered more in�uential than users who are mentioned infrequently in other

users' tweets.

In this thesis, we assume that for eah tweet of user v, there is at most one mention,

one reply, or one retweet from user u. The reation of user u to eah tweet of user

v an be viewed as a Bernoulli trial, responding (i.e., retweet, reply or mention)

or not responding. Further, we assume that the probability that u responds (i.e.,

retweets, replies, or mentions) v's tweets is the pairwise in�uene probability pv,u
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(i.e., the probability that v in�uenes u to perform an ation one v beomes ative).

We use Maximum-Likelihood Estimation under Bernoulli distribution [Ahmed and

Ezeife 2013℄ to estimate pv,u as follows,

pv,u =
# retweets of u on v +# replies of u on v +#mentions of u on v

# tweets of v
(3.4)

Having onstruted the formula of the pairwise in�uene probability pv,u (equation

3.4), we now present the algorithm omputeIn�ueneProb whih uses relational

algebra operators left-join and projetion on Twitter datasets to retrieve the numera-

tor and denominator in equation 3.4, and ompute the pairwise in�uene probability

pv,u. The algorithm omputeIn�ueneProb (Algorithm 3) presented in this se-

tion is the seond step of our proposed framework CIAM. It takes as input 5 Twitter

datasets, i.e., Twitter follow network (Table 3.1) whih onsists of tuples in the form

of (u, v) meaning u follows v, Twitter tweets network (Table 3.5) whih onsists of

tuples in the form of (v, t) meaning v posts t tweets in total, Twitter mention network

(Table 3.2) whih onsists of tuples in the form of (u, v, w) meaning u mentions v

w times, Twitter reply network (Table 3.3) whih onsists of tuples in the form of

(u, v, w) meaning u replies v w times, and Twitter retweet network (Table 3.3) whih

onsists of tuples in the form of (u, v, w) meaning u retweets v w times. omputeIn-

�ueneProb outputs the pairwise in�uene probabilities pv,u for eah edge (v, u) ∈ E

(Table 3.10). There are 5 main steps in omputeIn�ueneProb.

Step 1. (line 1 of omputeIn�ueneProb (Algorithm 3)), omputeIn�uen-

eProb �rst onatenates Twitter mention network (Table 3.2), Twitter reply net-

work (Table 3.3), and Twitter retweet network (Table 3.3) into one table named Tri,

and then groups Tri by olumns u and v suh that eah group in Tri represents node

u mentions, replies, or retweets node v w times (Table 3.6).
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Step 2. (line 2 of omputeIn�ueneProb (Algorithm 3)), omputeIn�uen-

eProb proesses the grouped Tri (Table 3.6), sums up the value of w per group to

obtain a summed-up Tri table (Table 3.7). Eah tuple in the summed-up Tri table

is in the form of (u, v, w) where w is # retweets of u on v + # replies of u on v +

#mentions of u on v, i.e., the numerator in equation (3.9).

Step 3. (line 3 of omputeIn�ueneProb (Algorithm 3)) omputeIn�uen-

eProb left-joins the summed-up Tri (Table 3.7) and TwitterTweets (Table 3.5) into

one table named TriTweets (Table 3.8). Eah tuple in TriTweets is in the form of

(u, v, w, t) where w is #retweetsof uonv +#repliesof uonv +#mentionsof uonv,

the numerator in equation (3.9), t is # tweets of v, i.e., the denominator in equation

(3.9).

Step 4. (line 4 of omputeIn�ueneProb (Algorithm 3)) omputeIn�uen-

eProb adds to TriTweets (Table 3.8) a new olumn named pv,u whose value is

w/t to obtain an expended TriTweets (Table 3.9). The expended TriTweets table has

tuples in the form of (u, v, w, t, p) where w is #retweetsof uonv+#repliesof uonv+

#mentions of u on v, the numerator in equation 3.4, t is # tweets of v, the denomi-

nator in equation 3.4, and p = w/t is the pairwise in�uene probability pv,u based on

equation 3.4.

Step 5. (line 5 of omputeIn�ueneProb (Algorithm 3)) omputeIn�uen-

eProb drops unwanted olumns w and t from Table 3.9 to obtain a pruned Tritweets

table (with only three olumns, i.e., u, v, pv,u), and left-joins Twitter follow network

(Table 3.1) and the pruned Tritweets table to obtain the �nal in�uene probability

table named In�ueneProbTable (Table 3.10) where eah tuple is in the form of (u,

v, pv,u) indiating the in�uene that node v exerts on node u, that is if v is ative, it

sueeds in ativating u with the probability of pv,u.
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u v w

2 1 30

2 1 30

2 1 10

3 2 30

3 2 30

3 2 10

4 3 10

1 4 30

1 5 15

1 5 15

4 5 10

5 6 60

Table 3.6: Conatenate Twitter men-

tion network, Twitter reply network,

and Twitter retweet network into one

table named Tri and group Tri by

olumns u and v

u v w

2 1 70

3 2 70

4 3 10

1 4 30

1 5 30

4 5 10

5 6 60

Table 3.7: The summed-up Tri by

omputing the sum of w for eah group

u v w t

2 1 70 100

3 2 70 100

4 3 10 100

1 4 30 100

1 5 30 100

4 5 10 100

5 6 60 100

Table 3.8: Left-join Tri and Twitter-

Tweets on olumn v to obtain a new

table named TriTweets

u v w t p

2 1 70 100 0.7

3 2 70 100 0.7

4 3 10 100 0.1

1 4 30 100 0.3

1 5 30 100 0.3

4 5 10 100 0.1

5 6 60 100 0.6

Table 3.9: Add a new olumn named

p to TriTweets, where p = w/t

u v p

2 1 0.7

3 2 0.7

4 3 0.1

1 4 0.3

1 5 0.3

4 5 0.1

5 6 0.6

Table 3.10: Drop olumns w and t

from TriTweets, and left-join Twitter

follow network and TriTweets to ob-

tain the in�uene probability table,

where eah tuple (u, v, p) means the

probability that node v in�uenes on

node u is p.
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Algorithm 3 omputeIn�ueneProb(TwitterData) - Compute pairwise in�uene

probabilities for eah edge in the in�uene graph

Input: Twitter follow network (e.g., Table 3.1), Twitter tweets network (e.g., Table

3.5), Twitter mention network (e.g., Table 3.2), Twitter reply network (e.g., Table

3.3, Twitter retweet network (e.g., Table 3.4))

Output: an in�uene probability table (e.g., Table 3.10)

1: Conatenate Twitter mention network, Twitter reply network, and Twitter

retweet network into one table named Tri and group Tri by olumns u and v
as shown in Table 3.6

2: Proess the grouped Tri and get the sum of olumn w for eah group as shown in

Table 3.7

3: Left-join the summed-up Tri and Twitter tweets network on olumn v to obtain

a joined table named TriTweets as shown in Table 3.8

4: Add a new olumn named p to the joined TriTweets, where p = w/t as shown in

Table 3.9

5: Drop olumns w and t from TriTweets, left-join Twitter follow network and

TriTweets to obtain the in�uene probability table named In�ueneProbTable

as shown in Table 3.10

6: return In�ueneProbTable

3.2.3 Augment the In�uene Graph with Learned Pairwise In-

�uene Probabilities

The algorithm augmentG (Algorithm 4) presented in this setion is the third step of

our proposed framework CIAM. augmentG takes as input the in�uene graph G =

(V,E) (Figure 3.5) generated by onvertFollowToInf (Algorithm 2), the in�uene

probability table (Table 3.10) derived from omputeIn�ueneProb (Algorithm 3).

For eah edge (v, u) ∈ E, augmentG looks up the in�uene probability table to

�nd the pairwise in�uene probability pv,u (line 1.1). It assigns the edge (v, u) two

pairwise in�uene probabilities, pAv,u = pv,u (the probability that v in�uenes u to

adopt tehnology A) (line 1.2) and pBv,u = pv,u (the probability that v in�uenes u

to adopt tehnology B) (line 1.3). It stops when all the edges (v, u) ∈ E have been

visited. When it stops, it outputs the augmented in�uene graph G = (V,E, P )

where V represents Twitter users, E represents the in�uene interations between

Twitter users, P represents the pairwise in�uene probabilities between two Twitter
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users (Figure 3.6), as done by [Kempe et al. 2003℄ and [Ahmed and Ezeife 2013℄.

Algorithm 4 augmentG(G,In�ueneProbTable) - Assign in�uene probabilities to

eah edge in the in�uene graph

Input: the in�uene graph G = (V,E) without edge weights, in�uene probability
table (i.e., In�ueneProbTable) with tuple (v,u,pv,u)

Output: an augmented in�uene graph G = (V,E, P ) with in�uene probabilities

as edge weights

1. For eah edge (v, u) ∈ E

1.1 Look up the in�uene probability table (Table 3.10) for pv,u

1.2 pAv,u = pv,u

1.3 pBv,u = pv,u

2. return G

1

2

3

4

5

6

p
A
1,2 = 0.7

p
B
1,2 = 0.7

p
A
2,3 = 0.7

p
B
2,3 = 0.7

p
A
3,4 = 0.1

p
B
3,4 = 0.1

p
A
5,4 = 0.1

p
B
5,4 = 0.1

p
A
4,1 = 0.3

p
B
4,1 = 0.3

p
A
5,1 = 0.3

p
B
5,1 = 0.3

p
A
6,5 = 0.6

p
B
6,5 = 0.6

Figure 3.6: In�uene graph augmented with pairwise in�uene probabilities for all

edges

3.2.4 Disovering In�uential Nodes for a Competing Ation

The algorithm gtMineA (Algorithm 6) presented in this setion is the fourth step

of our proposed framework CIAM. gtMineA �nds the k most in�uential A-nodes

in a network where there exists a seed set of B-nodes. The algorithm takes as input

the augmented in�uene graph G = (V,E, P ) (where V represents Twitter users, E

represents the in�uene interations between Twitter users, P represents the pairwise

in�uene probabilities between two Twitter users) generated by augmentG (Algo-

rithm 4), the seed set for B (denoted as SB
0 ), and a non-negative integer k meaning
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the number of in�uential A-nodes to be disovered. gtMineA outputs a seed set

for A (denoted as SA
0 ) with size at most k that maximizes the expeted number of

�nal adoptions of tehnology A. gtMineA onsists of two phases. The �rst phase

exploits the greedy algorithm [Kempe et al. 2003℄ suh that for eah node v that is

not in the two seed sets (i.e., SA
0 and SB

0 ), the algorithm omputes the marginal gain

of adding v to SA
0 and SB

0 , piks the node whih yields the maximum marginal gain,

and repeats this proess k times to �nd k A-seeds. The seond phase exploits the

loal searh algorithm [Ahmed and Ezeife, 2013℄ suh that if swapping any A-seed

in SA
0 (found in the �rst phase) and any node not in the two seed sets (i.e., SA

0 and

SB
0 ) yields more A-nodes at the end of the di�usion, the algorithm will swap them.

The algorithm will repeat the swapping operation until no more improvements are

possible.

Before we present algorithm gtMineA, we introdue an algorithm named gt-

InfA that is alled by gtMineA for omputing the A-in�uene spread of SA
0 and

SB
0 (denoted as σA(SA

0 , S
B
0 )).

gtInfA (Algorithm 5) takes as input

1. the augmented in�uene graphG = (V,E, P ) (where V represents Twitter users,

E represents the in�uene interations between Twitter users, P represents

the pairwise in�uene probabilities between two Twitter users) generated by

augmentG (Algorithm 4)

2. two seed sets SA
0 and SB

0

Eah node u ∈ V is assoiated with the following node parameters

1. �oat fA
u - the threshold funtion of node u ∈ V for tehnology A

2. �oat fB
u - the threshold funtion of node u ∈ V for tehnology B

3. �oat θAu - the threshold for tehnology A, randomly hosen
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4. �oat θBu - the threshold for tehnology B, randomly hosen

5. string state - A, B, AB, or 0

gtInfA uses the following variables

1. TA
to store the set of A-nodes ativated during last step, initially TA

is set to

SA
0

2. TB
to store the set of B-nodes ativated during last step, initially TB

is set to

SB
0

3. newA
to store the set of A-nodes ativated during urrent step, newA

is set to

∅ at the beginning of the urrent step

4. newB
to store the set of B-nodes ativated during urrent step, newB

is set to

∅ at the beginning of the urrent step

5. infA
to store A-in�uene spread of SA

0 and SB
0 , initially it is set to the number

of nodes in the seed set for A

gtInfA outputs the A-in�uene spread of SA
0 and SB

0 (denoted as σA(SA
0 , S

B
0 )),

i.e., the expeted number of A-nodes at the end of CGT di�usion proess with the

seed sets SA
0 and SB

0 . There are 5 main steps in gtInfA (Algorithm 5).

Step 1. (line 1 of gtInfA (Algorithm 5)) gtInfA uses variable TA
to store the

set of A-nodes ativated during last step, initially TA
is set to SA

0 .

Step 2. (line 2 of gtInfA (Algorithm 5)) gtInfA uses variable TB
to store the

set of B-nodes ativated during last step, initially TB
is set to SB

0 .

Step 3. (line 3 of gtInfA (Algorithm 5)) gtInfA uses variable infA
to store the

A-in�uene spread of SA
0 and SB

0 , initially it is set to the number of nodes in the seed

set for A.

Step 4. (line 4 of gtInfA (Algorithm 5)) As long as there are nodes ativated during

last time step, those ativated nodes would propagate in�uene during urrent step
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through the network (line 4). gtInfA uses variable newA
to store the set of A-nodes

ativated during urrent step, newA
is set to ∅ at the beginning of the urrent step

(line 4.1), and newB
to store the set of B-nodes ativated during urrent step, newB

is set to ∅ at the beginning of the urrent step (line 4.2). For eah A-node v ativated

from last step in TA
, the algorithm will loop through eah inative out-neighbor u of

v (line 4.3), ompute the threshold funtion fA
u for node u using equation 3.2 (line

4.3.1.1). If the threshold funtion fA
u is no less than its threshold θAu , the algorithm

adds node u to newA
whih is the set of A-nodes newly ativated in urrent step

(line 4.3.1.2), and inreases A-in�uene spread by 1 (line 4.3.1.3). Similarly, for eah

B-node v ativated from last step in TB
(line 4.4), the algorithm will loop through

eah inative out-neighbor u of v, ompute the threshold funtion fB
u for node u using

equation 3.3 (line 4.4.1.1). If the threshold funtion fB
u is no less than its threshold

θBu , it adds node u to newB
whih is the set of B-nodes newly ativated in urrent

step (line 4.4.1.2). After it proesses all nodes in TA
(the set of A-nodes ativated

during last step) and TB
(the set of B-nodes ativated during last step), the urrent

di�usion step is done. At this moment, the set of A-nodes ativated during urrent

step beomes the set of A-nodes ativated from last step (line 4.5), and the set of

B-nodes ativated during urrent step beomes the set of B-nodes ativated from last

step (line 4.6).

Step 5. (line 5 of gtInfA (Algorithm 5)) When both TA
(the set of A-nodes

ativated during last step) and TB
(the set of B-nodes ativated during last step)

are empty meaning no more ativations, it stops and returns the expeted number

A-nodes at the end of the di�usion, i.e., the A-in�uene spread of SA
0 and SB

0 .

Example 3.2.1. How gtInfA Works. In the soial network shown in Figure 3.7

(b), at time 0, there are two seed sets, SA
0 = {4, 5} and SB

0 = {6}. We will show

how gtInfA (Algorithm 5) omputes the in�uene spread for tehnology A given the

two seed set SA
0 and SB

0 , denoted as σA(SA
0 , S

B
0 ). At time 1, nodes 4 and 5 jointly
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Algorithm 5 gtInfA(G = (V,E, P ),SA
0 ,S

B
0 ) - ompute the number of A-nodes at

the end of the di�usion when the two seed sets are SA
0 and SB

0

Input: The augmented in�uene graph G = (V,E, P ) with in�uene probability as

edge weights, two seed sets SA
0 and SB

0

Output: infA
- the A-in�uene spread of SA

0 and SB
0

1. Set TA
, the set of A-nodes ativated during last time step, to SA

0

2. Set TB
, the set of B-nodes ativated during last time step, to SB

0

3. Set infA
, the A-in�uene spread of SA

0 and SB
0 to the number of nodes in

SA
0

4. While we have either A-nodes or B-nodes ativated from last step to propa-

gate in�uenes

4.1 Set newA
, the set of A-nodes newly ativated in urrent step, to ∅

4.2 Set newB
, the set of B-nodes newly ativated in urrent step, to ∅

4.3 For eah A-node v ativated from last step

4.3.1 For eah inative node u in the out-neighbors of v

4.3.1.1 ompute the threshold funtion fA
u for node u using equation 3.2

4.3.1.2 Add u to newA
, the set of A-nodes newly ativated in urrent step

if the threshold funtion rosses the threshold

4.3.1.3 Inrease the number of A-nodes by 1

4.4 For eah B-node v ativated from last step

4.4.1 For eah inative node u in the out-neighbors of v

4.4.1.1 ompute the threshold funtion fB
u for node u using equation 3.3

4.4.1.2 Add u to newB
, the set of B-nodes newly ativated in urrent step

if the threshold funtion rosses the threshold

4.5 At the end of the urrent step, set newA
, the set of A-nodes ativated

during urrent step to TA
, the set of A-nodes ativated from last step

4.6 At the end of the urrent step, set newB
, the set of B-nodes ativated

during urrent step to TB
, the set of B-nodes ativated from last step

5. Return infA
, the number A-nodes at the end of the di�usion
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ativate node 1 sine fA
1 = 1 − (1− pA4,1)(1 − pA5,1) = 1 − (1− 0.3)(1− 0.3) = 0.51 >

θA1 = 0.5, the state of node 1 beomes A. At time 2, node 1 ativates node 2 sine

fA
2 = 1− (1−pA1,2) = pA1,2 = 0.7 > θA2 = 0.6, the state of node 2 beomes A. At time 3,

node 2 ativates node 3, sine fA
3 = 1− (1 − pA2,3) = pA2,3 = 0.7 > θA3 = 0.6, the state

of node 3 beomes A. At this point, the di�usion stops sine no more ativations are

possible. The set of A-nodes at this point is {1, 2, 3, 4, 5}, and the number of A-nodes

at this moment is 5. Algorithm 5 returns 5 whih is the A-in�uene spread of SA
0 and

SB
0 .

1

2

3

4

5

6

pA1,2 = 0.7

pB1,2 = 0.7

pA2,3 = 0.7

pB2,3 = 0.7

pA3,4 = 0.1

pB3,4 = 0.1

pA5,4 = 0.1

pB5,4 = 0.1pA4,1 = 0.3

pB4,1 = 0.3

pA5,1 = 0.3

pB5,1 = 0.3

pA6,5 = 0.6

pB6,5 = 0.6

θA6 = 0.5
θB6 = 0.5

θA5 = 0.5
θB5 = 0.5

θA4 = 0.5
θB4 = 0.5

θA3 = 0.6
θB3 = 0.6

θA2 = 0.6
θB2 = 0.6

θA1 = 0.5
θB1 = 0.5

(a) Input Graph

Figure 3.7: Example of gtInfA(SA
0 , S

B
0 )

Having introdued algorithm gtInfA, we an now present the algorithm gt-

MineA (Algorithm 6) whih �nds the k most in�uential A-nodes in a network where

there exists a seed set of B-nodes. The algorithm takes as input the augmented in-

�uene graph G = (V,E, P ) whih generated by augmentG (Algorithm 4), the seed

set for B (denoted as SB
0 ), and a non-negative integer k meaning the number of in-

�uential nodes to be disovered, and outputs a seed set for A (denoted as SA
0 ) with

size at most k that maximizes the expeted number of �nal adoptions of tehnology

A. There are 5 main steps in gtMineA (Algorithm 6).
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Step 1. (line 1 of gtMineA (Algorithm 6)) gtMineA uses variable SA
0 to store

A-seeds. Initially, SA
0 is set to ∅ (line 1).

Step 2. (line 2 of gtMineA (Algorithm 6)) gtMineA onsists of two phases. The

�rst phase adopts the existing greedy algorithm [Kempe et al. 2003℄ suh that for

eah node v that is not in the two seed sets (i.e., SA
0 and SB

0 ), the algorithm omputes

the marginal gain of adding v to two seed sets (i.e., SA
0 and SB

0 ), piks the node whih

yields the max and adds it to SA
0 (lines 3-4).

Step 3. (line 3 of gtMineA (Algorithm 6)) gtMineA repeats step 2 k times to

�nd k seeds.

Step 4. (line 4 of gtMineA (Algorithm 6)) The seond phase of gtMineA

exploits the loal searh algorithm [Ahmed and Ezeife, 2013℄ suh that if swapping

any A-seed in SA
0 (found in the �rst phase) and any node not in the two seed sets

yields larger A-in�uene spread (line 3.1), the algorithm will swap them.

Step 5. (line 5 of gtMineA (Algorithm 6)) gtMineA repeats step 4 until no

more improvements in A-in�uene spread are possible.

Algorithm 6 gtMineA(G = (V,E, P ), SB
0 , k)- Find k in�uential A-nodes under

CGT

Input: an augmented in�uene graph G = (V,E, P ) with in�uene probabilities as

edge weights, a seed set for B (denoted as SB
0 ), and a non-negative integer k

Output: a seed set for A (denoted as SA
0 ) with size at most k that maximizes the

expeted number of �nal adoptions of tehnology A

1. Set SA
0 to ∅

2. Compute the marginal gain of adding eah node u ∈ V − SA
0 − SB

0 to SA
0

and SB
0 , pik the node u whih yields the maximum marginal gain, and add

node u to A-seed set SA
0

3. Repeat Step 2 k times to �nd k A-seeds

4. Loal Searh on SA
0 to improve the seletion by swapping node u ∈ SA

0 and

node v ∈ V − SA
0 − SB

0 if σCGT (S
A
0 + {v} − {u}, SB

0 ) > σCGT (S
A
0 , S

B
0 )

5. Repeat step 4 until no more improvements in A-in�uene spread are possible

6. Return A-seed set SA
0
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Remark 3.2.1. The marginal gain of adding a A-node u to two seed sets SA
0 and SB

0

is de�ned as σ(SA
0 ∪ {u}, SB

0 )− σ(SA
0 , S

B
0 ).

Now, we will show how gtMineA works through example 3.2.2

Example 3.2.2. Initially, SA
0 = ∅ and SB

0 = {6}. To �nd the �rst in�uential A

seed, the algorithm omputes the marginal gain of adding eah node v not in the

two seed sets (i.e., v ∈ V − SA
0 − SB

0 ) to SA
0 and SB

0 . The marginal gain of adding

eah node v into SA
0 and SB

0 is summarized in Table 3.11. The algorithm piks the

node with the maximum marginal gain, whih is node 1 and adds it to SA
0 . At this

moment, SA
0 = {1} and SB

0 = {6}. To �nd the seond in�uential A seed, the algorithm

omputes the marginal gain of adding eah node v ∈ V −SA
0 −SB

0 to SA
0 and SB

0 . The

marginal gain of adding eah node v into SA
0 and SB

0 is summarized in Table 3.12.

The algorithm piks the node with the maximum marginal gain, whih is node 4 and

adds it to SA
0 . So, S

A
0 = {1, 4}. Sine budget k = 2, and we have 2 nodes 1 and 4 in

SA
0 , the greedy part of the algorithm is done.

Now, the algorithm will swap any node in SA
0 with any node not in the two seed sets SA

0

and SB
0 to see if there is any improvement with the spread. At this point, SA

0 = {1, 4},

SB
0 = {6}, the set of nodes not in the two seed sets V − SA

0 − SB
0 = {2, 3, 5}, the

spread σA(SA
0 , S

B
0 ) = 4. The algorithm omputes the spread after swapping nodes

1 and 2, and obtains σA(SA
0 − {1} + {2}, SB

0 ) = 3 < σA(SA
0 , S

B
0 ) = 4, meaning

no improvements. Then, the algorithm omputes the spread after swapping nodes 1

and 3, and obtains σA(SA
0 − {1} + {3}, SB

0 ) = 2 < σA(SA
0 , S

B
0 ) = 4, meaning no

improvements. Next, the algorithm omputes the spread after swapping nodes 1 and

5, and obtains σA(SA
0 − {1} + {5}, SB

0 ) = 5 > σA(SA
0 , S

B
0 ) = 4, meaning there is an

improvement. Hene, the algorithm will keep the swap. At this point, SA
0 = {5, 4},

SB
0 = {6}, the set of nodes not in the two seed sets V −SA

0 −SB
0 = {1, 2, 3}, the spread

σA(SA
0 , S

B
0 ) = 5. The algorithm swaps any node in SA

0 with any node not in the two

seed sets SA
0 and SB

0 to see if there is any improvement with the spread. Sine none
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Node Marginal

Gain

1 3
2 2
3 1
4 1
5 1

Table 3.11: Marginal Gain: First Pass

of gtMineA's Greedy Phase

Node Marginal

Gain

2 0
3 0
4 1
5 1

Table 3.12: Marginal Gain: Seond

Pass of gtMineA's Greedy Phase

of the swapping operations yield any improvements, the algorithm stops and returns

SA
0 = {5, 4}.

3.3 Complexity Analysis

The gtInfA algorithm (Algorithm 5), whih is a sub-proedure of gtMineA (Algo-

rithm 6), runs in time O(m∗E), where m is the number of round for MC simulations,

E is the number of edges in G, sine for eah round of MC simulation, gtInfA sans

the out-neighbors of eah ative node, and the total number of out-neighbors of all

ative nodes is O(E).

The gtMineA algorithm (Algorithm 6) runs in time O(k ∗ V ∗ m ∗ E), where

k is the budget, i.e., the number of A-nodes to be disovered as early adopters of

tehnology A, V is the number of nodes in G, m is the number of round for MC

simulations, and E is the number of edges in G. gtMineA onsists of two phases.

The �rst phase is greedy algorithm whih runs in time O(k∗V ∗m∗E), where k is the

budget, i.e., the number of A-nodes to be disovered as early adopters of tehnology

A, V is the number of nodes in G, m is the number of round for MC simulations, and

E is the number of edges in G, sine for eah pass of the greedy phase, gtInfA alls

gtInfA algorithm (Algorithm 5) O(V ) times, and there are k passes. The seond

phase is the loal searh based algorithm whih ould run for an exponential amount
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of time (O(2n)) until it �nds an improvement in the in�uene spread [Ahmed and

Ezeife, 2013℄. To ensure the algorithm runs in polynomial time, we break the swap

operation when the number of loops rosses k ∗ V ∗m ∗E, whih ensures the seond

phase runs in O(k∗V ∗m∗E) time. Therefore, the overall running time of gtMineA

algorithm (Algorithm 6) is in O(k ∗ V ∗m ∗ E).
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Chapter 4

Experiments and Analysis

4.1 Dataset

On 4th July 2012, two international experiments involved in searhing for the elusive

Higgs boson, the ATLAS and CMS ollaborations announed the disovery of a Higgs

boson-like partial. Domenio et al [2013℄ have traked and monitored user ativities

on Twitter (i.e., posting tweets, retweets, mentions and replies about the disovery)

before, during and after the announement (i.e., between 00 : 00AM , 1st July 2012

and 11 : 59PM , 7th July 2012). In this researh, we use their Higgs Twitter Datasets

to study information di�usion under the CGT model.

The Higgs Twitter Dataset onsists of four datasets, Twitter follow network, Twit-

ter mention network, Twitter reply network, and Twitter retweet network. Twitter

follow network onsists of 456, 631 nodes and 14, 855, 875 edges. Eah line in the

follower dataset is in the form of (u, v) meaning node u follows node v. Twitter men-

tion network onsists of 302, 975 nodes and 449, 827 edges. Eah line in the mention

dataset is in the form of (u, v, w) meaning node u mentions node v w times. Twit-

ter reply network onsists of 37, 366 nodes and 30, 836 edges. Eah line in the reply

dataset is in the form of (u, v, w) meaning node u replies node v w times. Twitter
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retweet network onsists of 425, 008 nodes and 733, 647 edges. Eah line in the retweet

network is in the form of (u, v, w) meaning node u retweets node v w times.

However, there are two issues with the Higgs Twitter Dataset. The �rst issue with

the Higgs Twitter Dataset is that the follow network onsists of 456, 631 nodes and

14, 855, 875 edges, whih is too big. Another issue with the Higgs Twitter Dataset

is that it does not ontain the Twitter tweets dataset. Sine our main goal of this

researh is to show the quality of the seeds hosen by our proposed gtMineA is

better than that of CELF-like algorithms under the CGT model, to takle the �rst

issue, we extrat a sub-graph from Twitter follow network for experiments. The sub-

graph onsists of 1, 001 nodes and 3, 201 edges. The extration is done by randomly

hoosing a root node and performing breadth �rst searh from the root, stopping

when the number of nodes in the sub-graph is desired, as done by [He et al. 2012℄.

To takle the seond issue, we assign tweets ount to eah Twitter user by uniformly

at random hoosing a number over the interval [1, 100] and adding the number to the

total number of the user's retweets, mentions, and replies.

4.2 Algorithms Compared

In our experiments, we ompare the quality of the seeds whih is measured by the

in�uene spread ahieved by the following algorithms.

gtMineA. Our proposed algorithm.

CELF. Greedy algorithm with lazy evaluation [Leskove et al. 2007℄ under the CGT

model that hooses k A-nodes with the largest marginal gain from the in�uene graph.

TGT. Loal-searh algorithm [Ahmed and Ezeife 2013℄ under the CGT model that

hooses k A-nodes by two loal searh operations, add and swap.
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4.3 Comparing In�uene Spread

Figure 4.1 shows the in�uene spreads ahieved by TGT, CELF, and our proposed

gtMineA respetively. The omparison is performed on the 1000-node sub-graph of

Twitter follow network with 50 randomly hosen B-seeds. From Figure 4.1, we an

see our proposed gtMineA outperforms CELF for all A-seed set size as expeted.

TGT outperforms gtMineA and CELF for all A-seed set size as expeted at the ost

of running time.
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Figure 4.1: In�uene spread of various algorithms in Twitter datasets

4.4 Comparing Running Time

Figure 4.2 shows the running time taken by TGT, CELF, and our proposed gtMineA

respetively. The omparison is performed on the 1000-node sub-graph of Twitter

follow network with 50 randomly hosen B-seeds. From Figure 4.1, we an see that

CELF performs almost in onstant time when the size of A-seed set is≤ 50. gtMineA

performs lose to CELF when the size of the A-seed set is ≤ 15, takes more time than

CELF as the size of the A-seed set inreases but runs faster then TGT. This shows

the room for improvement of gtMineA in terms of salability. As mentioned earlier,
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salability was not fous of this work; however there are several ways to make the

approah more salable. We disuss some of these approahes in the next setion.
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Figure 4.2: Running Time of various algorithms in Twitter datasets

From the experiments on the quality of A-in�uene spread and running time

omparison, we an that see gtMineA is a tradeo� solution between running time and

the quality of the A-seed set beause TGT under CGT model may run in exponential

time.

96



www.manaraa.com

Chapter 5

Conlusions and Future Works

Maximizing the spread of in�uene through a soial network is to �nd a small set

of in�uential people (the seed set) in the online ommunities (the rowd) suh that

if we market to them, the spread of in�uene will be maximized. The most moti-

vating appliation of in�uene maximization is viral marketing. In this researh, we

have takled the in�uene maximization problem in a network where there exist two

ompeting in�uene di�usions.

First, we propose a di�usion model named Competing General Threshold (CGT)

model to model how the two ompeting in�uenes propagate from node to node and

how a node deides to aept whih in�uene. We show that the di�usion proess

under the CGT model is monotone and non-submodular, therefore the in�uene maxi-

mization problem under the CGT model boils down to monotone and non-submodular

maximization whih is proven to be NP-hard. Then, We exploit Maximum-Likelihood

Estimation (MLE) to learn the two in�uene probabilities that v in�uenes u to adopt

eah tehnology respetively from Twitter datasets. Based on the monotone and non-

submodular property of CGT model, we propose an algorithm named gtmineA to

mine A-seeds as early adopters of tehnology A under the CGT model in a soial

network where early adopters of tehnology B already exist, based on the greedy al-
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gorithm [Kempe et al. 2003℄ for the monotone property of CGT and the loal searh

algorithm [Ahmed and Ezeife 2013℄ for the non-submodular property of CGT. We

perform experiments on the real-world datasets from Twitter to show our proposed

gtMineA outperforms existing heuristis suh as CELF by at most 15%.

In the future, to takle the salability of gtMineA, we should onsider the strength

of weak ties [Granovetter et al. 1973℄ and ommunity struture in networks [Fortunat

and Santo 2009℄. Another possible solution is to redue the searh spae by ranking

the nodes in terms of relevane as done in [Mumu and Ezeife 2014℄. Also, we want

to extend the Competing General Threshold network from two players to more than

two players, look for more involved threshold funtions, and quantify the threshold

value per tehnology for eah player. In order to design a more natural di�usion

model, we should study game theory and inlude the idea to the model when dealing

with more than one player. Other future diretions inlude (1) to onsider dynami

networks where new nodes ome in, existing nodes leave, or the in�uene probability

per edge hanges as time goes on (i.e., it is not independent to time any more), (2)

to onsider multi-dimension network whih inorporates Faebook network, Twitter

network, LinkedIn, and so on.
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